Antonyms are similar: Towards paradigmatic association approach to rating similarity in SimLex-999 and WordSim-353

Abstract SimLex-999 is a widely used lexical resource for tracking progress in word similarity computation. It anchors similarity in synonymy, while other researchers such as Agirre et al. (2009) adopt broader similarity definition, involving also hyponymy and antonymy relations. Paradigmatic association covers synonymy, antonymy and co-hyponymy relations (Lapesa et al., 2014) largely overlapping with this broader similarity definition. Two words are paradigmatically associated if they can replace one another without affecting the grammaticality or acceptability of the sentence. Paradigmatic association can be elicited by asking for word interchangeability, which we hypothesize might be more natural than instructing raters with a list of relations to consider. To validate the proposed approach, we reannotated WordSim353 and SimLex-999 using two new guidelines: one explicitly qualifying antonymy as a similarity relation, the second one eliciting word interchangeability. As additional datasets we present a crowdsourced version of WordSim353 and a Czech version of SimLex-999. The paper also includes detailed analysis of lexical content of SimLex-999 and benchmark of thesaurus-based and distributional algorithms on multiple word similarity and relatedness datasets.

[1]  Eneko Agirre,et al.  A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches , 2009, NAACL.

[2]  Magnus Sahlgren,et al.  The Word-Space Model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces , 2006 .

[3]  Simone Paolo Ponzetto,et al.  WikiRelate! Computing Semantic Relatedness Using Wikipedia , 2006, AAAI.

[4]  Eneko Agirre,et al.  Personalizing PageRank for Word Sense Disambiguation , 2009, EACL.

[5]  Yves Peirsman,et al.  Size matters: tight and loose context definitions in English word space models , 2008 .

[6]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[7]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[8]  Jérôme Euzenat,et al.  A Feature and Information Theoretic Framework for Semantic Similarity and Relatedness , 2010, SEMWEB.

[9]  J. Bullinaria,et al.  Extracting semantic representations from word co-occurrence statistics: A computational study , 2007, Behavior research methods.

[10]  Stefan Evert,et al.  Contrasting Syntagmatic and Paradigmatic Relations: Insights from Distributional Semantic Models , 2014, *SEM@COLING.

[11]  Caroline Willners,et al.  Antonyms in Context : A Corpus-Based Semantic Analysis of Swedish Descriptive Adjectives , 2001 .

[12]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[13]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[14]  Elia Bruni,et al.  Multimodal Distributional Semantics , 2014, J. Artif. Intell. Res..

[15]  Mike Thelwall,et al.  Topic-based sentiment analysis for the social web: The role of mood and issue-related words , 2013, J. Assoc. Inf. Sci. Technol..

[16]  Brent J. Hecht,et al.  Turkers, Scholars, "Arafat" and "Peace": Cultural Communities and Algorithmic Gold Standards , 2015, CSCW.

[17]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[18]  Stan Szpakowicz,et al.  Roget's thesaurus and semantic similarity , 2012, RANLP.

[19]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[20]  Graeme Hirst,et al.  Evaluating WordNet-based Measures of Lexical Semantic Relatedness , 2006, CL.

[21]  A. Tversky Features of Similarity , 1977 .

[22]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[23]  Keith A Hutchison,et al.  Is semantic priming due to association strength or feature overlap? A microanalytic review , 2003, Psychonomic bulletin & review.

[24]  Jonathan Weese,et al.  UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems , 2013, *SEMEVAL.

[25]  Ian H. Witten,et al.  An effective, low-cost measure of semantic relatedness obtained from Wikipedia links , 2008 .

[26]  Michael D. Lee,et al.  An Empirical Evaluation of Models of Text Document Similarity , 2005 .

[27]  Roi Reichart,et al.  Separated by an Un-common Language: Towards Judgment Language Informed Vector Space Modeling , 2015 .

[28]  Evgeniy Gabrilovich,et al.  Large-scale learning of word relatedness with constraints , 2012, KDD.

[29]  F. D. Saussure Cours de linguistique générale , 1924 .

[30]  Silvie Cinková WordSim353 for Czech , 2016, TSD.

[31]  Chung Yong Lim,et al.  A Case Study on Inter-Annotator Agreement for Word Sense Disambiguation , 1999 .

[32]  Stefan Evert,et al.  A Large Scale Evaluation of Distributional Semantic Models: Parameters, Interactions and Model Selection , 2014, TACL.

[33]  Eric A. Anchimbe,et al.  The native-speaker fever in English language teaching (ELT): Pitting pedagogical competence against historical origin , 2013 .

[34]  Evgeniy Gabrilovich,et al.  Wikipedia-based Semantic Interpretation for Natural Language Processing , 2014, J. Artif. Intell. Res..

[35]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[36]  Ian H. Witten,et al.  An open-source toolkit for mining Wikipedia , 2013, Artif. Intell..

[37]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[38]  G. Miller,et al.  Contextual correlates of semantic similarity , 1991 .

[39]  Felix Hill,et al.  SimLex-999: Evaluating Semantic Models With (Genuine) Similarity Estimation , 2014, CL.

[40]  Iryna Gurevych,et al.  Composing Measures for Computing Text Similarity , 2015 .

[41]  Giuseppe Pirrò,et al.  A semantic similarity metric combining features and intrinsic information content , 2009, Data Knowl. Eng..

[42]  Vasile Rus,et al.  Lemon and Tea Are Not Similar: Measuring Word-to-Word Similarity by Combining Different Methods , 2015, CICLing.

[43]  Alessandro Lenci,et al.  How we BLESSed distributional semantic evaluation , 2011, GEMS.

[44]  Evgeniy Gabrilovich,et al.  A word at a time: computing word relatedness using temporal semantic analysis , 2011, WWW.

[45]  Iryna Gurevych,et al.  Automatically Creating Datasets for Measures of Semantic Relatedness , 2006, ACL 2006.

[46]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[47]  Christian Biemann,et al.  Turk Bootstrap Word Sense Inventory 2.0: A Large-Scale Resource for Lexical Substitution , 2012, LREC.

[48]  D. Gentner,et al.  PSYCHOLOGICAL SCIENCE Research Article STRUCTURAL ALIGNMENT IN COMPARISON: No Difference Without Similarity , 2022 .

[49]  Alexander Panchenko,et al.  A Study of Hybrid Similarity Measures for Semantic Relation Extraction , 2012 .

[50]  Bernd Bischl,et al.  OpenML Benchmarking Suites and the OpenML100 , 2017, ArXiv.

[51]  D. Gentner,et al.  Structure mapping in analogy and similarity. , 1997 .

[52]  Georgiana Dinu,et al.  Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors , 2014, ACL.

[53]  D. Crystal,et al.  English as a Global Language , 1998 .

[54]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[55]  Ehud Rivlin,et al.  Placing search in context: the concept revisited , 2002, TOIS.

[56]  Gerard de Melo,et al.  Semantic Information Extraction for Improved Word Embeddings , 2015, VS@HLT-NAACL.

[57]  Christian Biemann,et al.  Human and Machine Judgements for Russian Semantic Relatedness , 2016, AIST.

[58]  Thomas A. Schreiber,et al.  The University of South Florida free association, rhyme, and word fragment norms , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[59]  John B. Goodenough,et al.  Contextual correlates of synonymy , 1965, CACM.

[60]  Ronen Feldman,et al.  Book Reviews: The Text Mining Handbook: Advanced Approaches to Analyzing Unstructured Data by Ronen Feldman and James Sanger , 2008, CL.

[61]  Reinhard Rapp,et al.  The Computation of Word Associations: Comparing Syntagmatic and Paradigmatic Approaches , 2002, COLING.

[62]  Sabine Schulte im Walde,et al.  Uncovering Distributional Differences between Synonyms and Antonyms in a Word Space Model , 2013, IJCNLP.

[63]  C. Burgess,et al.  Semantic and associative priming in the cerebral hemispheres: Some words do, some words don't … sometimes, some places , 1990, Brain and Language.