Combined pattern search optimization of feature extraction and classification parameters in facial recognition

Constantly, the assumption is made that there is an independent contribution of the individual feature extraction and classifier parameters to the recognition performance. In our approach, the problems of feature extraction and classifier design are viewed together as a single matter of estimating the optimal parameters from limited data. We propose, for the problem of facial recognition, a combination between an Interest Operator based feature extraction technique and a k-NN statistical classifier having the parameters determined using a pattern search based optimization technique. This approach enables us to achieve both higher classification accuracy and faster processing time.

[1]  Department of Electrical,et al.  Computational and Performance Aspects of PCA-Based Face-Recognition Algorithms , 2001, Perception.

[2]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[3]  K. Uchimura,et al.  A Hybrid Metric Estimation/Learning Model for K-NN Classifier , 2006, 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing.

[4]  Ah Chung Tsoi,et al.  Face recognition: a convolutional neural-network approach , 1997, IEEE Trans. Neural Networks.

[5]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[6]  Madan M. Gupta,et al.  Neuro-Vision Systems: Principles and Applications , 1995 .

[7]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[8]  De-Shuang Huang,et al.  Interest Operator versus Gabor filtering for facial imagery classification , 2007, Pattern Recognit. Lett..

[9]  Hans P. Moravec Robot Rover Visual Navigation , 1981 .

[10]  R. Nelson,et al.  Visual Navigation , 1996 .

[11]  D. B. Gerham Characterizing virtual eigensignatures for general purpose face recognition , 1998 .

[12]  Nasser M. Nasrabadi,et al.  Automatic Target Recognition Using a Modular Neural Network. , 1998 .

[13]  K. Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Process. Lett..

[14]  Robert Michael Lewis,et al.  Pattern Search Algorithms for Bound Constrained Minimization , 1999, SIAM J. Optim..

[15]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Raghu Machiraju,et al.  Finding optimal views for 3D face shape modeling , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[17]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[18]  P. Jonathon Phillips,et al.  Face recognition vendor test 2002 , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[19]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Tomaso A. Poggio,et al.  Face recognition with support vector machines: global versus component-based approach , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[21]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[22]  Stan Z. Li,et al.  Face recognition using the nearest feature line method , 1999, IEEE Trans. Neural Networks.

[23]  Alexander M. Bronstein,et al.  Three-Dimensional Face Recognition , 2005, International Journal of Computer Vision.

[24]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[25]  Bahram Javidi,et al.  Image Recognition and Classification: Algorithms, Systems, and Applications , 2002 .

[26]  De-Shuang Huang,et al.  Human face recognition based on multi-features using neural networks committee , 2004, Pattern Recognit. Lett..

[27]  Alex Pentland,et al.  A Bayesian similarity measure for deformable image matching , 2001, Image Vis. Comput..

[28]  Konstantinos N. Plataniotis,et al.  Face recognition using LDA-based algorithms , 2003, IEEE Trans. Neural Networks.

[29]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[30]  Rama Chellappa,et al.  Image-Based Face Recognition: Issues and Methods , 2002 .

[31]  Ralph Gross,et al.  Quo vadis Face Recognition , 2001 .

[32]  Stan Z. Li,et al.  Manifold Learning and Applications in Recognition , 2005 .

[33]  Francesca Odone,et al.  A Sparsity-Enforcing Method for Learning Face Features , 2009, IEEE Transactions on Image Processing.

[34]  David Zhang,et al.  Improving the interest operator for face recognition , 2009, Expert Syst. Appl..

[35]  Tieniu Tan,et al.  Automatic 3D face recognition from depth and intensity Gabor features , 2009, Pattern Recognit..

[36]  David Zhang,et al.  Interest filter vs. interest operator: Face recognition using Fisher linear discriminant based on interest filter representation , 2008, Pattern Recognit. Lett..

[37]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[38]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[39]  Jin Hyung Kim,et al.  Face Recognition using Support Vector Machines with Local Correlation Kernels , 2002, Int. J. Pattern Recognit. Artif. Intell..

[40]  Nasser M. Nasrabadi,et al.  Hopfield network for stereo vision correspondence , 1992, IEEE Trans. Neural Networks.

[41]  C.-D. Caleanu,et al.  Facial recognition using committee of neural networks , 2000, Proceedings of the 5th Seminar on Neural Network Applications in Electrical Engineering. NEUREL 2000 (IEEE Cat. No.00EX287).

[42]  Chin-Seng Chua,et al.  Face recognition from 2D and 3D images using 3D Gabor filters , 2005, Image Vis. Comput..