Vibrotactile Rendering of Splashing Fluids

We introduce the use of vibrotactile feedback as a rendering modality for solid-fluid interaction, based on the physical processes that generate sound during such interactions. This rendering approach enables the perception of vibrotactile feedback from virtual scenarios that resemble the experience of stepping into a water puddle or plunging a hand into a volume of fluid.

[1]  Karon E. MacLean,et al.  Perception of sound renderings via vibrotactile feedback , 2011, 2011 IEEE World Haptics Conference.

[2]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[3]  Joseph M. Romano,et al.  Creating Realistic Virtual Textures from Contact Acceleration Data , 2012, IEEE Transactions on Haptics.

[4]  G. J. Franz Splashes as Sources of Sound in Liquids , 1959 .

[5]  Maud Marchal,et al.  Six Degrees-of-Freedom Haptic Interaction with Fluids , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Kees van den Doel,et al.  Physically based models for liquid sounds , 2005, TAP.

[7]  M. Minnaert XVI.On musical air-bubbles and the sounds of running water , 1933 .

[8]  Vincent Hayward,et al.  Audio-tactile Display of Ground Properties Using Interactive Shoes , 2010, HAID.

[9]  Vincent Hayward,et al.  Preliminary Experiment Combining Virtual Reality Haptic Shoes and Audio Synthesis , 2010, EuroHaptics.

[10]  M. Lesser,et al.  Thirty years of liquid impact research: a tutorial review , 1995 .

[11]  Carlo Drioli,et al.  Acoustic rendering of particle-based simulation of liquids in motion , 2012, Journal on Multimodal User Interfaces.

[12]  M. Hollins,et al.  Vibrotaction and texture perception , 2002, Behavioural Brain Research.

[13]  Katherine J. Kuchenbecker,et al.  Improving contact realism through event-based haptic feedback , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Dinesh Manocha,et al.  Sounding liquids: Automatic sound synthesis from fluid simulation , 2010, TOGS.

[15]  Jeremy R. Cooperstock,et al.  Interaction capture in immersive virtual environments via an intelligent floor surface , 2010, 2010 IEEE Virtual Reality Conference (VR).

[16]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[17]  M. Paradiso,et al.  Neuroscience: Exploring the Brain , 1996 .

[18]  Sam Howison,et al.  Deep- and shallow-water slamming at small and zero deadrise angles , 2002 .

[19]  V. Hayward,et al.  Design and analysis of a recoil-type vibrotactile transducer. , 2010, The Journal of the Acoustical Society of America.

[20]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[21]  Y. Visell,et al.  An Architectural Platform for Audio-Haptic Simulation in Walking , 2007 .

[22]  Allison M. Okamura,et al.  Reality-based models for vibration feedback in virtual environments , 2001 .

[23]  M. Longuet-Higgins An analytic model of sound production by raindrops , 1990, Journal of Fluid Mechanics.

[24]  Davide Rocchesso,et al.  An introductory catalog of computer-synthesized contact sounds , 2003 .

[25]  Allison M. Okamura,et al.  Vibration feedback models for virtual environments , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[26]  Stephen McAdams,et al.  A Vibrotactile Device for Display of Virtual Ground Materials in Walking , 2008, EuroHaptics.

[27]  Jochen Lang,et al.  IIR Filter Models of Haptic Vibration Textures , 2011, IEEE Transactions on Instrumentation and Measurement.

[28]  E. G. Richardson,et al.  The Sounds of Impact of a Solid on a Liquid Surface , 1955 .