Additive light field displays

We propose a see-through additive light field display as a novel type of compressive light field display. We utilize holographic optical elements (HOEs) as transparent additive layers. The HOE layers are almost free from diffraction unlike spatial light modulator layers, which makes this additive light field display more advantageous when modifying the number of layers, thickness, and pixel density compared with conventional compressive displays. Meanwhile, the additive light field display maintains advantages of compressive light field displays. The proposed additive light field display shows bright and full-color volumetric images in high definition. In addition, users can view real-world scenes beyond the displays. Hence, we expect that our method can contribute to the realization of augmented reality. Here, we describe implementation of a prototype additive light field display with two additive layers, evaluate the performance of transparent HOE layers, describe several results of display experiments, discuss the diffraction effect of spatial light modulators, and analyze the ability of the additive light field display to express uncorrelated light fields.

[1]  Ronald Azuma,et al.  A survey of augmented reality" Presence: Teleoperators and virtual environments , 1997 .

[2]  Gordon Wetzstein,et al.  The light field stereoscope , 2015, ACM Trans. Graph..

[3]  Yasuhiro Takaki,et al.  Flat-panel see-through three-dimensional display based on integral imaging. , 2015, Optics letters.

[4]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[5]  Dieter Schmalstieg,et al.  Mathematics and geometry education with collaborative augmented reality , 2003, Comput. Graph..

[6]  A. Kak,et al.  Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm , 1984, Ultrasonic imaging.

[7]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, SIGGRAPH 2011.

[8]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[9]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, ACM Trans. Graph..

[10]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, ACM Trans. Graph..

[11]  Ronald Azuma,et al.  A Survey of Augmented Reality , 1997, Presence: Teleoperators & Virtual Environments.

[12]  Sung-Wook Min,et al.  Integral floating display systems for augmented reality. , 2012, Applied optics.

[13]  Yasuhiro Takaki,et al.  Multi-projection of lenticular displays to construct a 256-view super multi-view display. , 2010, Optics express.

[14]  Byoungho Lee,et al.  Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality. , 2014, Optics letters.

[15]  Brian H. Marcus,et al.  Holographic data storage technology , 2000, IBM J. Res. Dev..

[16]  Sung-Keun Lee,et al.  Three-dimensional holographic head mounted display using holographic optical element , 2015, 2015 IEEE International Conference on Consumer Electronics (ICCE).

[17]  Gordon Wetzstein,et al.  A compressive light field projection system , 2014, SIGGRAPH '14.

[18]  Y T Huang Polarization-selective volume holograms: general design. , 1994, Applied optics.

[19]  Jihad El-Sana,et al.  Shape Recognition and Pose Estimation for Mobile Augmented Reality , 2009, IEEE Transactions on Visualization and Computer Graphics.

[20]  Byoungho Lee,et al.  Viewing angle enhancement of an integral imaging display using Bragg mismatched reconstruction of holographic optical elements. , 2016, Applied optics.

[21]  Gordon Wetzstein,et al.  Tensor displays , 2012, ACM Trans. Graph..

[22]  Bahram Javidi,et al.  Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing. , 2004, Optics express.

[23]  Byoungho Lee Three-dimensional displays, past and present , 2013 .

[24]  G. Lippmann Epreuves reversibles donnant la sensation du relief , 1908 .

[25]  Douglas Lanman,et al.  Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization , 2010, ACM Trans. Graph..

[26]  Alex Olwal,et al.  ASTOR: an autostereoscopic optical see-through augmented reality system , 2005, Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05).

[27]  James F. O'Brien,et al.  Optimal presentation of imagery with focus cues on multi-plane displays , 2015, ACM Trans. Graph..

[28]  Gordon Wetzstein,et al.  Polarization fields: dynamic light field display using multi-layer LCDs , 2011, SA '11.

[29]  Bahram Javidi,et al.  A 3D integral imaging optical see-through head-mounted display. , 2014, Optics express.

[30]  Takanori Senoh,et al.  Large size three-dimensional video by electronic holography using multiple spatial light modulators , 2014, Scientific Reports.

[31]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[32]  Douglas Lanman,et al.  Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources , 2014, SIGGRAPH '14.

[33]  Byoungho Lee,et al.  Space bandwidth product enhancement of holographic display using high-order diffraction guided by holographic optical element. , 2015, Optics express.

[34]  Sheng Liu,et al.  An optical see-through head mounted display with addressable focal planes , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[35]  Mary C. Whitton,et al.  Technologies for augmented reality systems: realizing ultrasound-guided needle biopsies , 1996, SIGGRAPH.

[36]  Sung-Wook Min,et al.  Multi-viewer tracking integral imaging system and its viewing zone analysis. , 2009, Optics express.

[37]  Ichiro KASAI,et al.  A Practical See-Through Head Mounted Display Using a Holographic Optical Element , 2001 .

[38]  Byoungho Lee,et al.  Recent progress in see-through three-dimensional displays using holographic optical elements [Invited]. , 2016, Applied optics.

[39]  Y. Takaki,et al.  Hologram generation by horizontal scanning of a high-speed spatial light modulator. , 2009, Applied optics.

[40]  Dieter Basler Holographic Optical Elements , 1989, Other Conferences.

[41]  Thomas F. Coleman,et al.  A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..

[42]  Byoungho Lee,et al.  Recent progress in three-dimensional information processing based on integral imaging. , 2009, Applied optics.

[43]  Byoungho Lee,et al.  Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element. , 2015, Applied optics.

[44]  David Kim,et al.  HoloDesk: direct 3d interactions with a situated see-through display , 2012, CHI.

[45]  S. Min,et al.  3D/2D convertible projection-type integral imaging using concave half mirror array. , 2010, Optics express.

[46]  Demetri Psaltis,et al.  Holographic Data Storage , 1998, Computer.