Case study: an evaluation of user-assisted hierarchical watershed segmentation

This paper evaluates the effectiveness of an interactive, three-dimensional image segmentation technique that relies on watersheds. This paper presents two user-based case studies, which include two different groups of domain experts. Subjects manipulate a graphics-based front end to a hierarchy of segmented regions generated from a watershed segmentation algorithm, which is implemented in the Insight Toolkit. In the first study, medical students segment several different anatomical structures from the Visible Human Female head and neck color cryosection data. In the second study, radiologists use the interactive tool to produce models of brain tumors from MRI data. This paper presents a quantitative and qualitative comparison against hand contouring. To quantify accuracy, we estimate ground truth from the hand-contouring data using the Simultaneous Truth and Performance Estimation algorithm. We also apply metrics from the literature to estimate precision and efficiency. The watershed segmentation technique showed improved subject interaction times and increased inter-subject precision over hand contouring, with quality that is visually and statistically comparable. The analysis also identifies some failures in the watershed technique, where edges were poorly defined in the data, and note a trend in the hand-contouring results toward systematically larger segmentations, which raises questions about the wisdom of using expert segmentations to define ground truth.

[1]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yongmin Kim,et al.  A methodology for evaluation of boundary detection algorithms on medical images , 1997, IEEE Transactions on Medical Imaging.

[3]  Luis Ibáñez,et al.  The ITK Software Guide , 2005 .

[4]  최태영,et al.  원형 패턴 벡터를 이용한 인쇄체 한글 인식 ( Recognition of Printed Hangul Text Using Circular Pattern Vectors ) , 1998 .

[5]  R. Lotufo,et al.  MINIMAL SET OF MARKERS FOR THE WATERSHED TRANSFORM , 2002 .

[6]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[7]  Ross T. Whitaker,et al.  Interactive, GPU-Based Level Sets for 3D Brain Tumor Segmentation , 2003 .

[8]  Ross T. Whitaker Geometry-limited diffusion , 1993 .

[9]  S. Beucher,et al.  Morphological segmentation , 1990, J. Vis. Commun. Image Represent..

[10]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[11]  Ramin Shahidi,et al.  Validation of medical image processing in image-guided therapy , 2002, IEEE Transactions on Medical Imaging.

[12]  김종덕,et al.  Interactive. , 1996, Nursing older people.

[13]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[14]  Bradford J. Wood,et al.  Segmentation of liver tumors using the Insight Segmentation and Registration Toolkit , 2004, CARS.

[15]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[16]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[17]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[18]  R. Kikinis,et al.  Automated segmentation of MR images of brain tumors. , 2001, Radiology.

[19]  Serge Beucher,et al.  Watershed, Hierarchical Segmentation and Waterfall Algorithm , 1994, ISMM.

[20]  Michael J. Ackerman,et al.  From Data to Knowledge - the Visible Human Project® Continues , 2001, MedInfo.

[21]  Edward R. Dougherty,et al.  Mathematical Morphology in Image Processing , 1992 .

[22]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[23]  R. Whitaker Geometry-limited diffusion in the characterization of geometric patches in images , 1993 .

[24]  William E. Lorensen,et al.  The visualization toolkit (2nd ed.): an object-oriented approach to 3D graphics , 1998 .

[25]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[26]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[27]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ron Kikinis,et al.  Automated Segmentation of MRI of Brain Tumors , 2001 .

[29]  Guido Gerig,et al.  Robust Estimation for Brain Tumor Segmentation , 2003, MICCAI.

[30]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[31]  Guido Gerig,et al.  Valmet: A New Validation Tool for Assessing and Improving 3D Object Segmentation , 2001, MICCAI.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[34]  Benoit M. Dawant,et al.  Morphometric analysis of white matter lesions in MR images: method and validation , 1994, IEEE Trans. Medical Imaging.

[35]  J J Vaquero,et al.  Applying watershed algorithms to the segmentation of clustered nuclei. , 1998, Cytometry.

[36]  Jayaram K. Udupa,et al.  Methodology for evaluating image-segmentation algorithms , 2002, SPIE Medical Imaging.

[37]  Michael J. Ackerman,et al.  Toward a Common Validation Methodology for Segmentation and Registration Algorithms , 2000, MICCAI.

[38]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[39]  William M. Wells,et al.  Validation of Image Segmentation and Expert Quality with an Expectation-Maximization Algorithm , 2002, MICCAI.

[40]  Ross T. Whitaker,et al.  Direct visualization of volume data , 1992, IEEE Computer Graphics and Applications.

[41]  J Sijbers,et al.  Watershed-based segmentation of 3D MR data for volume quantization. , 1997, Magnetic resonance imaging.

[42]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Kemal Tuncali,et al.  Intraoperative Segmentation and Nonrigid Registration for Image Guided Therapy , 2000, MICCAI.