A review on the current research trends in ductile regime machining

Ductile regime machining is an alternative method for polishing of brittle materials to obtain a high quality surface finish by a ductile or plastic material removal process. Hence, there is a growing interest to study ductile regime machining over several decades. This paper reviews current state of research and development in ductile regime machining. The research and development associated with mechanism of brittle–ductile transition, surface integrity, and the factors influencing ductile regime machining are discussed in details in this paper.

[1]  M. B. Cai,et al.  Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon , 2007 .

[2]  T. Matsumura,et al.  Influence of tool inclination on brittle fracture in glass cutting with ball end mills , 2008 .

[3]  Martin G. Schinker,et al.  Subsurface damage mechanisms at high-speed ductile machining of optical glasses☆ , 1991 .

[4]  Naoya Ikawa,et al.  Crack Initiation in Machining Monocrystalline Silicon , 1999 .

[5]  Thomas G. Bifano,et al.  Acoustic emission as an indicator of material-removal regime in glass micro-machining , 1992 .

[6]  Jiwang Yan,et al.  Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy , 2008 .

[7]  Jiwang Yan,et al.  Surface and subsurface damages in nanoindentation tests of compound semiconductor InP , 2008 .

[8]  M B Cai,et al.  Effect of crystalline orientation of a diamond tool on the machined surface in ductile mode cutting of silicon , 2008 .

[9]  Jun'ichi Tamaki,et al.  Experimental Study on the Ultraprecision Ductile Machinability of Single-Crystal Germanium , 2004 .

[10]  G. M. Zhang,et al.  Chemo-Mechanical Effects on the Efficiency of Machining Ceramics , 1992 .

[11]  Mahmudur Rahman,et al.  EFFECTS OF COOLANT SUPPLY METHODS AND CUTTING CONDITIONS ON TOOL LIFE IN END MILLING TITANIUM ALLOY , 2006 .

[12]  O. F. Devereux,et al.  Coolant pH control for optimum ceramic grinding. I. rebinder effect in polycrystalline aluminum oxide , 2002 .

[13]  Ronald O. Scattergood,et al.  Ductile‐Regime Machining of Germanium and Silicon , 1990 .

[14]  N. Ikawa,et al.  Brittle-Ductile Transition Phenomena in Microindentation and Micromachining , 1995 .

[15]  Y. Takeuchi,et al.  Ultraprecision 3D Micromachining of Glass , 1996 .

[16]  A. Senthil Kumar,et al.  Identification of Effective Zones for High Pressure Coolant in Milling , 2000 .

[18]  Mustafizur Rahman,et al.  Analytical modeling of ductile-regime machining of tungsten carbide by endmilling , 2011 .

[19]  Wong Yoke San,et al.  Ultraprecision ductile mode machining of glass by micromilling process , 2011 .

[20]  M. Rahman,et al.  A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers , 2007 .

[21]  O. F. Devereux,et al.  Coolant pH control for optimum ceramic grinding. III. Rebinder Effect in silicon nitride , 2009 .

[22]  Bi Zhang,et al.  Grinding Damage Prediction for Ceramics via CDM Model , 2000 .

[23]  S. R. Billingsley,et al.  Grinding induced subsurface cracks in silicon wafers , 1999 .

[24]  W. S. Blackley,et al.  Ductile-regime machining model for diamond turning of brittle materials , 1991 .

[25]  Zheng-ren Huang,et al.  Role of microstructure on surface and subsurface damage of sintered silicon carbide during grinding and polishing , 2010 .

[26]  Sumio Sakka,et al.  High pressure effects on glass , 1969 .

[27]  William J. Endres,et al.  AN ANALYSIS OF SURFACE CRACKING DURING ORTHOGONAL MACHINING OF GLASS , 2001 .

[28]  Tsunemoto Kuriyagawa,et al.  Single-point diamond turning of CaF2 for nanometric surface , 2004 .

[29]  P. Venkateswara Rao,et al.  A new chip-thickness model for performance assessment of silicon carbide grinding , 2004 .

[30]  Jiwang Yan,et al.  Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining , 2009 .

[31]  R. Scattergood,et al.  Ductile-Regime Grinding: A New Technology for Machining Brittle Materials , 1991 .

[32]  M. Rahman,et al.  A study on ultrasonic elliptical vibration cutting of tungsten carbide , 2009 .

[33]  Wong Yoke San,et al.  An experimental approach to study the capability of end-milling for microcutting of glass , 2011 .

[34]  R. Komanduri,et al.  On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications , 2001 .

[35]  Tsunemoto Kuriyagawa,et al.  Effects of tool edge radius on ductile machining of silicon: an investigation by FEM , 2009 .

[36]  Nakasuji Tomoaki,et al.  Diamond Turning of Brittle Materials for Optical Components , 1990 .

[37]  E. Makino,et al.  Ductile-regime turning mechanism of single-crystal silicon , 1996 .

[38]  Y. Zhu,et al.  Mechanism of brittle-ductile transition of a glass-ceramic rigid substrate , 2011 .

[39]  E. Shamoto,et al.  Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting , 2004, Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004..

[40]  Wei Wang,et al.  Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study , 2012 .

[41]  S. Liang,et al.  The mechanism of ductile chip formation in cutting of brittle materials , 2007 .

[42]  T. D. Howes,et al.  Subsurface Evaluation of Ground Ceramics , 1995 .

[43]  Percy Williams Bridgman,et al.  Effects of Very High Pressures on Glass , 1953 .

[44]  S. Liang,et al.  Nanometer-Scale Ductile Cutting of Tungsten Carbide☆ , 2004 .

[45]  N. Chandrasekaran,et al.  Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach , 1998 .

[46]  A. Senthil Kumar,et al.  Effect of High-Pressure Coolant on Machining Performance , 2002 .

[47]  A. Kumar,et al.  Effect of Minimal Quantities of Lubricant in Micro Milling , 2002 .

[48]  R. Komanduri,et al.  Molecular dynamics simulation of the nanometric cutting of silicon , 2001 .

[49]  Eric R. Marsh,et al.  THE EFFECT OF CRYSTALLOGRAPHIC ORIENTATION ON DUCTILE MATERIAL REMOVAL IN SILICON , 2022 .

[50]  Mahmudur Rahman,et al.  Experimental Evaluation on the Effect of Minimal Quantities of Lubricant in Milling , 2002 .

[51]  Tsunemoto Kuriyagawa,et al.  Ductile regime turning at large tool feed , 2002 .

[52]  K. Johnson,et al.  The correlation of indentation experiments , 1970 .

[53]  Liangchi Zhang,et al.  On the Limit of Surface Integrity of Alumina by Ductile-Mode Grinding , 2000 .

[54]  T. Matsumura,et al.  Effect of tilt angle on cutting regime transition in glass micromilling , 2009 .

[55]  Geok Soon Hong,et al.  A novel method for determination of the subsurface damage depth in diamond turning of brittle materials , 2011 .

[56]  In-Hyu Choi,et al.  Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics , 1997 .

[57]  D. Golini,et al.  Chemomechanical effects in ductile-regime machining of glass , 1993 .

[58]  Hiroaki Tanaka,et al.  Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation , 2007 .

[59]  T. Matsumura,et al.  Cutting process of glass with inclined ball end mill , 2008 .

[60]  Y. Shin,et al.  Experimental Evaluation of the Laser Assisted Machining of Silicon Nitride Ceramics , 1998, Manufacturing Science and Engineering.

[61]  Y. Wong,et al.  Ultraprecision machining of micro-structured functional surfaces on brittle materials , 2011 .

[62]  Kenji Inoue,et al.  Ultraprecision ductile cutting of glass by applying ultrasonic vibration , 1992 .

[63]  Spandan Maiti,et al.  A New Analytical Model for Estimation of Scratch‐Induced Damage in Brittle Solids , 2007 .

[64]  M. B. Cai,et al.  Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation , 2007 .

[65]  D. Tabor,et al.  The strength properties and frictional behaviour of brittle solids , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[66]  N. P. Hung,et al.  Effect of Crystalline Orientation in the Ductile-Regime Machining of Silicon , 2000 .

[67]  Mahmudur Rahman,et al.  Analytical model to determine the critical feed per edge for ductile–brittle transition in milling process of brittle materials , 2011 .

[68]  S. Agarwal,et al.  Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding , 2008 .