Time and space efficient generators for quasiseparable matrices

The class of quasiseparable matrices is defined by the property that any submatrix entirely below or above the main diagonal has small rank, namely below a bound called the order of quasiseparability. These matrices arise naturally in solving PDE's for particle interaction with the Fast Multi-pole Method (FMM), or computing generalized eigenvalues. From these application fields, structured representations and algorithms have been designed in numerical linear algebra to compute with these matrices in time linear in the matrix dimension and either quadratic or cubic in the quasiseparability order. Motivated by the design of the general purpose exact linear algebra library LinBox, and by algorithmic applications in algebraic computing, we adapt existing techniques introduce novel ones to use quasiseparable matrices in exact linear algebra, where sub-cubic matrix arithmetic is available. In particular, we will show, the connection between the notion of quasiseparability and the rank profile matrix invariant, that we have introduced in 2015. It results in two new structured representations, one being a simpler variation on the hierarchically semiseparable storage, and the second one exploiting the generalized Bruhat decomposition. As a consequence, most basic operations, such as computing the quasiseparability orders, applying a vector, a block vector, multiplying two quasiseparable matrices together, inverting a quasiseparable matrix, can be at least as fast and often faster than previous existing algorithms.

[1]  C. Pan On the existence and computation of rank-revealing LU factorizations , 2000 .

[2]  Jean-Guillaume Dumas,et al.  Fast computation of the rank profile matrix and the generalized Bruhat decomposition , 2016, J. Symb. Comput..

[3]  Marc Van Barel,et al.  A Givens-Weight Representation for Rank Structured Matrices , 2007, SIAM J. Matrix Anal. Appl..

[4]  Uwe Helmke,et al.  Bruhat canonical form for linear systems , 2007 .

[5]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[6]  Thomas Kailath,et al.  Linear complexity algorithms for semiseparable matrices , 1985 .

[7]  G. Golub,et al.  A bibliography on semiseparable matrices* , 2005 .

[8]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[9]  E. Tyrtyshnikov Matrix Bruhat decompositions with a remark on the QR (GR) algorithm , 1997 .

[10]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices: Linear Systems , 2010 .

[11]  Claude-Pierre Jeannerod,et al.  Solving structured linear systems with large displacement rank , 2008, Theor. Comput. Sci..

[12]  Wayne Eberly Polynomial and Matrix Computations Volume 1: Fundamental Algorithms (Dario Bini and Victor Pan) , 1996, SIAM Rev..

[13]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[14]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[15]  Clément Pernet Computing with Quasiseparable Matrices , 2016, ISSAC.

[16]  V. Pan On computations with dense structured matrices , 1990 .

[17]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..

[18]  I. Gohberg,et al.  On generators of quasiseparable finite block matrices , 2005 .

[19]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[20]  Israel Koltracht,et al.  Linear complexity algorithm for semiseparable matrices , 1985 .

[21]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[22]  S. Chandrasekaran,et al.  Algorithms to solve hierarchically semi-separable systems , 2007 .

[23]  F. Bruhat,et al.  Sur les représentations induites des groupes de Lie , 1956 .

[24]  V. Strassen Gaussian elimination is not optimal , 1969 .

[25]  T. Hwang,et al.  Rank revealing LU factorizations , 1992 .

[26]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[27]  Daniel Alpay,et al.  System theory, the Schur algorithm and multidimensional analysis , 2007 .

[28]  I. Gohberg,et al.  The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order , 2005 .

[29]  Claude-Pierre Jeannerod,et al.  Rank-profile revealing Gaussian elimination and the CUP matrix decomposition , 2011, J. Symb. Comput..

[30]  Jean-Guillaume Dumas,et al.  Computing the Rank Profile Matrix , 2015, ISSAC.

[31]  Ilse C. F. Ipsen,et al.  On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..

[32]  Yuli Eidelman,et al.  Implicit QR for companion-like pencils , 2014, Math. Comput..

[33]  T. Chan Rank revealing QR factorizations , 1987 .

[34]  Gennadi I. Malaschonok,et al.  Fast Generalized Bruhat Decomposition , 2010, CASC.

[35]  Jean-Guillaume Dumas,et al.  Simultaneous computation of the row and column rank profiles , 2013, ISSAC '13.