Robust plug-in bandwidth estimators in nonparametric regression

Abstract In this paper, we propose a robust bandwidth selection method for local M-estimates used in nonparametric regression. We study the asymptotic behavior of the resulting estimates. We use the results of a Monte Carlo study to compare the performance of various competitors for moderate samples sizes. It appears that the robust plug-in bandwidth selector we propose compares favorably to its competitors, despite the need to select a pilot bandwidth. The Monte Carlo study shows that the robust plug-in bandwidth selector is very stable and relatively insensitive to the choice of the pilot.

[1]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[2]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[3]  Shean-Tsong Chiu Why bandwidth selectors tend to choose smaller bandwidths, and a remedy , 1990 .

[4]  M. Priestley,et al.  Non‐Parametric Function Fitting , 1972 .

[5]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[6]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[7]  A. Georgiev Consistent nonparametric multiple regression: the fixed design case , 1988 .

[8]  M. C. Jones,et al.  Adaptive M -estimation in nonparametric regression , 1990 .

[9]  W. Härdle,et al.  Uniform Consistency of a Class of Regression Function Estimators , 1984 .

[10]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[11]  D. W. Scott,et al.  The L 1 Method for Robust Nonparametric Regression , 1994 .

[12]  C. J. Stone,et al.  An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates , 1984 .

[13]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[14]  J. K. Benedetti On the Nonparametric Estimation of Regression Functions , 1977 .

[15]  T. Gasser,et al.  A Flexible and Fast Method for Automatic Smoothing , 1991 .

[16]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[17]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[18]  W. Härdle,et al.  How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .

[19]  W. Wong On the Consistency of Cross-Validation in Kernel Nonparametric Regression , 1983 .

[20]  R. Fraiman,et al.  A Functional Approach to Robust Nonparametric Regression , 1991 .

[21]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[22]  R. M. Clark A calibration curve for radiocarbon dates , 1975, Antiquity.