Taxicab geometry in table of higher-order elements

The paper deals with the analysis of the order of the differential equation of motion describing the dynamics of a one-port network compounded of series or parallel connections of arbitrary elements from Chua’s table. It takes advantage of the fact that the elements in the table are arranged in a square graticule, which conforms to the so-called taxicab geometry. The order of the equation of motion is then expressed via the so-called Manhattan metric, which is applied to measuring the distance between individual elements in the table. It is demonstrated that the order can be taken as the radius of the so-called quarter-circle. The quarter-circle is a geometric figure in Chua’s table, circumscribed around an imaginary central point where the so-called hidden element of the one-port network is located.

[1]  Leon O. Chua How we predicted the memristor , 2018 .

[2]  Ricardo Riaza Comment: is memristor a dynamic element? , 2014 .

[3]  Leon O. Chua,et al.  Device modeling via nonlinear circuit elements , 1980 .

[4]  Bocheng Bao,et al.  Memristor-Based Canonical Chua's Circuit: Extreme Multistability in Voltage-Current Domain and Its Controllability in Flux-Charge Domain , 2018, Complex..

[5]  Qiang Xu,et al.  A Simple memristor Chaotic Circuit with Complex Dynamics , 2011, Int. J. Bifurc. Chaos.

[6]  J. Tow,et al.  Order of complexity of linear active networks , 1968 .

[7]  Dalibor Biolek,et al.  Predictive Models of Nanodevices , 2018, IEEE Transactions on Nanotechnology.

[8]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[9]  P. Bryant,et al.  The order of complexity of electrical networks , 1959 .

[10]  Santo Banerjee,et al.  Introduction to Nonlinear Circuits and Networks , 2018 .

[11]  Maria Fonoberova,et al.  Spectral Complexity of Directed Graphs and Application to Structural Decomposition , 2018, Complex..

[12]  Guangyi Wang,et al.  Coexisting Oscillation and Extreme Multistability for a Memcapacitor-Based Circuit , 2017 .

[13]  Bo-Cheng Bao,et al.  Reply: Comment on 'Is memristor a dynamic element?' , 2014 .

[14]  Jainendra K. Navlakha A Survey of System Complexity Metrics , 1987, Comput. J..

[15]  L. Chua,et al.  On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks , 1979 .

[16]  Henry Leung,et al.  Is memristor a dynamic element , 2013 .

[17]  Malcolm C. Smith Synthesis of mechanical networks: the inerter , 2002, IEEE Trans. Autom. Control..

[18]  E. Emre,et al.  On the order of complexity of active RC networks , 1973 .

[19]  Ivan Gutman,et al.  The energy of a graph and its size dependence. A Monte Carlo approach , 1998 .

[20]  J. A. Svoboda,et al.  The order of complexity of RLC-nullor networks , 1983 .

[21]  M. Plesset The Dynamics of Cavitation Bubbles , 1949 .

[22]  Frank Z. Wang,et al.  A Triangular Periodic Table of Elementary Circuit Elements , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  L. Chua Memristor-The missing circuit element , 1971 .

[24]  Takao Ozawa,et al.  Order of complexity of linear active networks and a common tree in the 2-graph method , 1972 .

[25]  E. J. Purslow,et al.  Order of complexity of active networks , 1967 .

[26]  Jiamei Nie,et al.  The mem-inerter: A new mechanical element with memory , 2018 .

[27]  P. Bryant Comments on 'The Degrees of Freedom in RLC Networks' , 1960 .

[28]  J. Franc,et al.  Fundamentals of Cavitation , 2004 .

[29]  Dalibor Biolek,et al.  Memristors and other higher-order elements in generalized through-across domain , 2016, 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS).

[30]  S. Strogatz,et al.  Chimera states for coupled oscillators. , 2004, Physical review letters.

[31]  Leon O. Chua,et al.  The effects of parasitic reactances on nonlinear networks , 1971 .

[32]  H. Iu,et al.  Memcapacitor model and its application in chaotic oscillator with memristor. , 2017, Chaos.

[33]  Dalibor Biolek,et al.  Euler-Lagrange Equations of Networks with Higher-Order Elements , 2017 .

[34]  Neil F. Johnson,et al.  Simply Complexity: A Clear Guide to Complexity Theory , 2007 .

[35]  Christopher Clapham,et al.  The Concise Oxford Dictionary of Mathematics , 1990 .

[36]  Leon O. Chua,et al.  Chaotic Oscillation via Edge of Chaos Criteria , 2017, Int. J. Bifurc. Chaos.

[37]  Dalibor Biolek,et al.  Nonlinear inerter in the light of Chua's table of higher-order electrical elements , 2016, 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).

[38]  M. Milic,et al.  General passive networks-Solvability, degeneracies, and order of complexity , 1974 .

[39]  Karthikeyan Rajagopal,et al.  Hyperchaotic Memcapacitor Oscillator with Infinite Equilibria and Coexisting Attractors , 2018, Circuits Syst. Signal Process..

[40]  Leonard T. Bruton Frequency selectivity using positive impedance converter-type networks , 1968 .

[41]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[42]  Lei Ren,et al.  A review on topological architecture and design methods of cable-driven mechanism , 2018 .

[43]  Z. Njitacke Tabekoueng,et al.  Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit. , 2015, Chaos.

[44]  Dalibor Biolek,et al.  Duality of Complex Systems Built from Higher-Order Elements , 2018, Complex..

[45]  O. Rössler An equation for hyperchaos , 1979 .

[46]  Fang Yuan,et al.  Complex Dynamics in a Memcapacitor-Based Circuit , 2019, Entropy.

[47]  Andrei N. Kolmogorov,et al.  On Tables of Random Numbers (Reprinted from "Sankhya: The Indian Journal of Statistics", Series A, Vol. 25 Part 4, 1963) , 1998, Theor. Comput. Sci..

[48]  Charles W. Butler,et al.  Design complexity measurement and testing , 1989, CACM.

[49]  A. Bers The Degrees of Freedom in RLC Networks , 1959 .

[50]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[51]  Leon O. Chua,et al.  The Fourth Element , 2012, Proceedings of the IEEE.

[52]  E. A. S Guillemin,et al.  Synthesis of Passive Networks , 1957 .

[53]  Leon O. Chua,et al.  Introduction to nonlinear network theory , 1969 .

[54]  Leon O. Chua,et al.  Parasitic Effects on Memristor Dynamics , 2016, Int. J. Bifurc. Chaos.

[55]  Fang Yuan,et al.  Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. , 2017, Chaos.

[57]  E. Krause,et al.  Taxicab Geometry: An Adventure in Non-Euclidean Geometry , 1987 .