Towards a fully unstructured ocean model for ice shelf cavity environments: Model development and verification using the Firedrake finite element framework

[1]  A. Jenkins,et al.  The ocean boundary layer beneath Larsen C Ice Shelf: insights from large-eddy simulations with a near-wall model , 2022, Journal of Physical Oceanography.

[2]  Luke P. Van Roekel,et al.  Ice-shelf ocean boundary layer dynamics from large-eddy simulations , 2019, The Cryosphere.

[3]  M. Morlighem,et al.  Mapping the Sensitivity of the Amundsen Sea Embayment to Changes in External Forcings Using Automatic Differentiation , 2021, Geophysical Research Letters.

[4]  H. Seroussi,et al.  Impact of Subglacial Freshwater Discharge on Pine Island Ice Shelf , 2021, Geophysical Research Letters.

[5]  A. Jenkins Shear, Stability and Mixing within the Ice-Shelf-Ocean Boundary Current , 2021, Journal of Physical Oceanography.

[6]  A. Jenkins,et al.  Two-timescale response of a large Antarctic ice shelf to climate change , 2021, Nature Communications.

[7]  D. Menemenlis,et al.  Development of adjoint-based ocean state estimation for the Amundsen and Bellingshausen Seas and ice shelf cavities using MITgcm/ECCO , 2021, Geoscientific Model Development.

[8]  I. Joughin,et al.  icepack: a new glacier flow modeling package in Python, version 1.0 , 2021, Geoscientific Model Development.

[9]  Eric W. Hester,et al.  Topography generation by melting and freezing in a turbulent shear flow , 2020, Journal of Fluid Mechanics.

[10]  P. Holland,et al.  Numerical Simulations of Melt-Driven Double-Diffusive Fluxes in a Turbulent Boundary Layer beneath an Ice Shelf , 2020 .

[11]  Shrikanth S. Narayanan,et al.  Bathymetric Influences on Antarctic Ice‐Shelf Melt Rates , 2020, Journal of Geophysical Research: Oceans.

[12]  K. Kusahara,et al.  Vertical processes and resolution impact ice shelf basal melting: A multi-model study , 2020, Ocean Modelling.

[13]  T. Hattermann,et al.  Modeling ice shelf cavities in the unstructured-grid, Finite Volume Community Ocean Model: Implementation and effects of resolving small-scale topography , 2020 .

[14]  Joseph G. Wallwork,et al.  Goal-oriented error estimation and mesh adaptation for shallow water modelling , 2019, SN Applied Sciences.

[15]  John R. Taylor,et al.  Stratification Effects in the Turbulent Boundary Layer beneath a Melting Ice Shelf: Insights from Resolved Large-Eddy Simulations , 2019, Journal of Physical Oceanography.

[16]  Simon W. Funke,et al.  dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake , 2019, J. Open Source Softw..

[17]  A. Jenkins,et al.  Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) , 2019, Geoscientific Model Development.

[18]  N. Gourmelen,et al.  How Accurately Should We Model Ice Shelf Melt Rates? , 2019, Geophysical Research Letters.

[19]  B. Scheuchl,et al.  Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica , 2019, Science Advances.

[20]  H. Fricker,et al.  Trends and connections across the Antarctic cryosphere , 2018, Nature.

[21]  Jon Hill,et al.  Efficient unstructured mesh generation for marine renewable energy applications , 2018 .

[22]  Lawrence Mitchell,et al.  Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations , 2017, Geoscientific Model Development.

[23]  K. Assmann,et al.  Oceanographic controls on the variability of ice-shelf basal melting and circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica , 2017 .

[24]  D. Menemenlis,et al.  Amundsen and Bellingshausen Seas simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters , 2017 .

[25]  Eric Rignot,et al.  Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation , 2017 .

[26]  D. Bromwich,et al.  How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century , 2017 .

[27]  R. Arthern,et al.  The sensitivity of West Antarctica to the submarine melting feedback , 2017 .

[28]  Andrew T. T. McRae,et al.  Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..

[29]  Andy R. Terrel,et al.  SymPy: Symbolic computing in Python , 2017, PeerJ Prepr..

[30]  Xylar Asay-Davis,et al.  Modeling Ice Shelf/Ocean Interaction in Antarctica: A Review , 2016 .

[31]  A. Jenkins A Simple Model of the Ice Shelf–Ocean Boundary Layer and Current , 2016 .

[32]  Andrew T. T. McRae,et al.  A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake , 2016 .

[33]  Andrew T. T. McRae,et al.  Automated Generation and Symbolic Manipulation of Tensor Product Finite Elements , 2014, SIAM J. Sci. Comput..

[34]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[35]  Daniel F. Martin,et al.  Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects , 2015 .

[36]  A. Chorin The Numerical Solution of the Navier-Stokes Equations for an Incompressible Fluid , 2015 .

[37]  Eric Rignot,et al.  Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013 , 2014, Geophysical Research Letters.

[38]  P. Heimbach,et al.  Simulation of subice shelf melt rates in a general circulation model: Velocity‐dependent transfer and the role of friction , 2014 .

[39]  Anders Logg,et al.  Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.

[40]  James R. Jordan,et al.  Modeling ice-ocean interaction in ice-shelf crevasses , 2013 .

[41]  Philip W. Jones,et al.  A multi-resolution approach to global ocean modeling , 2013 .

[42]  B. Scheuchl,et al.  Ice-Shelf Melting Around Antarctica , 2013, Science.

[43]  M. Piggott,et al.  Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves , 2013 .

[44]  David A. Ham,et al.  Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs , 2012, SIAM J. Sci. Comput..

[45]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[46]  Qiang Wang,et al.  Ice-shelf basal melting in a global finite-element sea-ice/ice-shelf/ocean model , 2012, Annals of Glaciology.

[47]  Andy R. Terrel,et al.  Common and Unusual Finite Elements , 2012 .

[48]  P. Heimbach,et al.  Adjoint sensitivities of sub-ice-shelf melt rates to ocean circulation under the Pine Island Ice Shelf, West Antarctica , 2012, Annals of Glaciology.

[49]  David A. Ham,et al.  Automated continuous verification for numerical simulation , 2011 .

[50]  Colin J. Cotter,et al.  Numerical wave propagation for the triangular P1DG-P2 finite element pair , 2010, J. Comput. Phys..

[51]  A. Jenkins,et al.  Observation and Parameterization of Ablation at the Base of Ronne Ice Shelf, Antarctica , 2010 .

[52]  Dmitri Kuzmin,et al.  A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods , 2010, J. Comput. Appl. Math..

[53]  C. C. Pain,et al.  Solving the Poisson equation on small aspect ratio domains using unstructured meshes , 2009, 0912.1976.

[54]  Colin J. Cotter,et al.  LBB stability of a mixed Galerkin finite element pair for fluid flow simulations , 2009, J. Comput. Phys..

[55]  C. C. Pain,et al.  A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling , 2008, 0805.4380.

[56]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[57]  P. Holland A model of tidally dominated ocean processes near ice shelf grounding lines , 2008 .

[58]  Martin Losch,et al.  Modeling ice shelf cavities in a z coordinate ocean general circulation model , 2008 .

[59]  Jean Utke,et al.  OpenAD/F: A Modular Open-Source Tool for Automatic Differentiation of Fortran Codes , 2008, TOMS.

[60]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[61]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[62]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[63]  H. Hellmer,et al.  NOTES AND CORRESPONDENCE The Role of Meltwater Advection in the Formulation of Conservative Boundary Conditions at an Ice-Ocean Interface , 2001 .

[64]  Stephen M. Griffies,et al.  Spurious Diapycnal Mixing Associated with Advection in a z-Coordinate Ocean Model , 2000 .

[65]  David M. Holland,et al.  Modeling Thermodynamic Ice–Ocean Interactions at the Base of an Ice Shelf , 1999 .

[66]  R. Errico What is an adjoint model , 1997 .

[67]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[68]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[69]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[70]  A. Jenkins,et al.  Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of Ice Shelf Water plumes , 1995 .

[71]  Dirk Olbers,et al.  A two-dimensional model for the thermohaline circulation under an ice shelf , 1989, Antarctic Science.

[72]  E. Lewis,et al.  Ice pumps and their rates , 1986 .