Quantum Transport Enhancement by Time-Reversal Symmetry Breaking

Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.

[1]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[2]  K. B. Whaley,et al.  Quantum entanglement in photosynthetic light-harvesting complexes , 2009, 0905.3787.

[3]  James D. Whitfield,et al.  Quantum Stochastic Walks: A Generalization of Classical Random Walks and Quantum Walks , 2009, 0905.2942.

[4]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[5]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[6]  Gregory S. Engel,et al.  Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2) , 2012, Proceedings of the National Academy of Sciences.

[7]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[8]  N. Piper,et al.  An Introductory Overview , 2003 .

[9]  A. Eisfeld Phase directed excitonic transport and its limitations due to environmental influence , 2010, 1010.4325.

[10]  J. Biamonte,et al.  A Course on Quantum Techniques for Stochastic Mechanics , 2012 .

[11]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[12]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[13]  Simone Severini,et al.  Zero Forcing, Linear and Quantum Controllability for Systems Evolving on Networks , 2011, IEEE Transactions on Automatic Control.

[14]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[15]  R. Peierls,et al.  Zur Theorie des Diamagnetismus von Leitungselektronen , 1933 .

[16]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[17]  Kihwan Kim,et al.  Quantum simulation of the transverse Ising model with trapped ions , 2011 .

[18]  A. Ekert,et al.  Decoherence-assisted transport in a dimer system. , 2012, Physical review letters.

[19]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[20]  G. J. Milburn,et al.  Multiscale photosynthetic and biomimetic excitation energy transfer , 2012, Nature Physics.

[21]  S. Sarma,et al.  Perspectives in Quantum Hall Effects , 1996 .

[22]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[23]  anonymous,et al.  Comprehensive review , 2019 .

[24]  S. Lloyd,et al.  The quantum Goldilocks effect: on the convergence of timescales in quantum transport , 2011, 1111.4982.

[25]  Lu-Ming Duan,et al.  Quantum simulation of frustrated Ising spins with trapped ions , 2010, Nature.

[26]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[27]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[28]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[29]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[30]  Animesh Datta,et al.  Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of n , 2009, 0901.4454.

[31]  R. Peierls,et al.  On the Theory of the Diamagnetism of Conduction Electrons , 1997 .

[32]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[33]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[34]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[35]  B. M. Fulk MATH , 1992 .

[36]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[37]  C. F. Roos,et al.  Deterministic entanglement of ions in thermal states of motion , 2008, 0810.0670.

[38]  Journal of Chemical Physics , 1932, Nature.

[39]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[40]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[41]  R. Krems,et al.  Non-adiabatic control of quantum energy transfer in ordered and disordered arrays , 2012, 1209.5327.

[42]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[43]  Alexander Blumen,et al.  Continuous-Time Quantum Walks: Models for Coherent Transport on Complex Networks , 2011, 1101.2572.

[44]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[45]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[46]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[47]  B. Bollobás The evolution of random graphs , 1984 .

[48]  C. Godsil,et al.  Control by quantum dynamics on graphs , 2009, 0910.5397.

[49]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[50]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[51]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[52]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[53]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .

[54]  E. Wigner Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren , 1931 .

[55]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.