Markov Random Fields in Image Segmentation

Markov Random Fields in Image Segmentation provides an introduction to the fundamentals of Markovian modeling in image segmentation as well as a brief overview of recent advances in the field. Segmentation is formulated within an image labeling framework, where the problem is reduced to assigning labels to pixels. In a probabilistic approach, label dependencies are modeled by Markov random fields (MRF) and an optimal labeling is determined by Bayesian estimation, in particular maximum a posteriori (MAP) estimation. The main advantage of MRF models is that prior information can be imposed locally through clique potentials. MRF models usually yield a non-convex energy function. The minimization of this function is crucial in order to find the most likely segmentation according to the MRF model. Classical optimization algorithms including simulated annealing and deterministic relaxation are treated along with more recent graph cut-based algorithms. The primary goal of this monograph is to demonstrate the basic steps to construct an easily applicable MRF segmentation model and further develop its multi-scale and hierarchical implementations as well as their combination in a multilayer model. Representative examples from remote sensing and biological imaging are analyzed in full detail to illustrate the applicability of these MRF models. Furthermore, a sample implementation of the most important segmentation algorithms is available as supplementary software. Markov Random Fields in Image Segmentation is an invaluable resource for every student, engineer, or researcher dealing with Markovian modeling for image segmentation.

[1]  Josiane Zerubia,et al.  A Hierarchical Markov Random Field Model and Multitemperature Annealing for Parallel Image Classification , 1996, CVGIP Graph. Model. Image Process..

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[4]  Patrick Pérez,et al.  Champs markoviens et analyse multiresolution de l'image : application a l'analyse du mouvement , 1993 .

[5]  Philip H. S. Torr,et al.  What, Where and How Many? Combining Object Detectors and CRFs , 2010, ECCV.

[6]  B. Chalmond Image restoration using an estimated Markov model , 1988 .

[7]  Gabriele Moser,et al.  Multichannel hierarchical image classification using multivariate copulas , 2012, Electronic Imaging.

[8]  Wesley E. Snyder,et al.  Restoration of piecewise constant images by mean-field annealing , 1989 .

[9]  Zhuowen Tu,et al.  Image Segmentation by Data-Driven Markov Chain Monte Carlo , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[11]  Rama Chellappa,et al.  Markov random field models in image processing , 1998 .

[12]  Bruce Hajek,et al.  A tutorial survey of theory and applications of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[13]  D. A. Barry,et al.  A parallel simulated annealing algorithm using "Cilk" , 1996 .

[14]  Joseph A. O'Sullivan,et al.  Automatic target recognition organized via jump-diffusion algorithms , 1997, IEEE Trans. Image Process..

[15]  Rama Chellappa,et al.  Mean field annealing using compound Gauss-Markov random fields for edge detection and image estimation , 1993, IEEE Trans. Neural Networks.

[16]  Martial Hebert,et al.  A hierarchical field framework for unified context-based classification , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[17]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[18]  Andreea Trache,et al.  Total internal reflection fluorescence (TIRF) microscopy. , 2008, Current protocols in microbiology.

[19]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[20]  Josiane Zerubia,et al.  Unsupervised parallel image classification using a hierarchical Markovian model , 1995, Proceedings of IEEE International Conference on Computer Vision.

[21]  Josiane Zerubia,et al.  Unsupervised adaptive image segmentation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[22]  Josiane Zerubia,et al.  Multiscale Markov random field models for parallel image classification , 1993, 1993 (4th) International Conference on Computer Vision.

[23]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[24]  Maya R. Gupta,et al.  Theory and Use of the EM Algorithm , 2011, Found. Trends Signal Process..

[25]  Jean-François Giovannelli Estimation of the Ising field parameter thanks to the exact partition function , 2010, 2010 IEEE International Conference on Image Processing.

[26]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  R. Nelsen An Introduction to Copulas , 1998 .

[28]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Josiane Zerubia,et al.  Bayesian image classification using Markov random fields , 1996, Image Vis. Comput..

[30]  Charles A. Bouman,et al.  Multispectral image segmentation using a multiscale model , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[31]  Christian Mazza Parallel Simulated Annealing , 1992, Random Struct. Algorithms.

[32]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Josiane Zerubia,et al.  Satellite image classification using a modified Metropolis dynamics , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  Malin Akerfelt,et al.  Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line , 2007, Proceedings of the National Academy of Sciences.

[35]  Daniel Cremers,et al.  Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional , 2002, International Journal of Computer Vision.

[36]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Josiane Zerubia,et al.  Higher order active contours and their application to the detection of line networks in satellite imagery. , 2003, ICCV 2003.

[38]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[39]  Gabriele Moser,et al.  Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model , 2013, IEEE Geoscience and Remote Sensing Letters.

[40]  John W. Woods,et al.  Compound Gauss-Markov random fields for image estimation , 1991, IEEE Trans. Signal Process..

[41]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[42]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[43]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[44]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[45]  G. Parisi,et al.  Statistical Field Theory , 1988 .

[46]  Thierry Blu,et al.  Hexagonal versus orthogonal lattices: a new comparison using approximation theory , 2005, IEEE International Conference on Image Processing 2005.

[47]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[48]  Bahram Parvin,et al.  Geometric Approach to Segmentation and Protein Localization in Cell Cultured Assays , 2005, ISVC.

[49]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[50]  Patrick Pérez,et al.  Discrete Markov image modeling and inference on the quadtree , 2000, IEEE Trans. Image Process..

[51]  Paul Fieguth,et al.  Statistical Image Processing and Multidimensional Modeling , 2010 .

[52]  H. Künsch Gaussian Markov random fields , 1979 .

[53]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[54]  Rémi Ronfard,et al.  Modèles de Potts et relaxation d'images de labels par champs de Markov , 1992 .

[55]  S. Sangwine,et al.  The Colour Image Processing Handbook , 1998, Springer US.

[56]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[57]  D.A. Landgrebe,et al.  Classification with spatio-temporal interpixel class dependency contexts , 1992, IEEE Trans. Geosci. Remote. Sens..

[58]  Dimitris N. Metaxas Physics-Based Deformable Models: Applications to Computer Vision, Graphics, and Medical Imaging , 1996 .

[59]  Adrian Barbu,et al.  Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Charles Kervrann,et al.  Statistical deformable model-based segmentation of image motion , 1999, IEEE Trans. Image Process..

[61]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[62]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Stuart Geman,et al.  Markov Random Field Image Models and Their Applications to Computer Vision , 2010 .

[64]  Emile H. L. Aarts,et al.  Theoretical aspects of local search , 2006, Monographs in Theoretical Computer Science. An EATCS Series.

[65]  Josiane Zerubia,et al.  A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs , 2007, 2007 IEEE International Conference on Image Processing.

[66]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[67]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Nikos Paragios,et al.  Shape Priors for Level Set Representations , 2002, ECCV.

[70]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[71]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[72]  Song-Chun Zhu,et al.  Analysis and synthesis of textured motion: particles and waves , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  Zoltan Kato,et al.  A Markov random field image segmentation model for color textured images , 2006, Image Vis. Comput..

[74]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[76]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  P. Pérez,et al.  Multiscale minimization of global energy functions in some visual recovery problems , 1994 .

[78]  Josiane Zerubia,et al.  Parallel image classification using multiscale Markov random fields , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[79]  Zoltan Kato,et al.  A Multi-Layer MRF Model for Video Object Segmentation , 2006, ACCV.

[80]  Dimitris N. Metaxas,et al.  Using the Pn Potts model with learning methods to segment live cell images , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[81]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[82]  Zoltan Kato,et al.  Multicue MRF image segmentation: combining texture and color features , 2002, Object recognition supported by user interaction for service robots.

[83]  Zoltan Kato,et al.  A Markov Random Field Image Segmentation Model Using Combined Color and Texture Features , 2001, CAIP.

[84]  Pierre Lanchantin,et al.  Statistical image segmentation using triplet Markov fields , 2003, SPIE Remote Sensing.

[85]  Josiane Zerubia,et al.  A Level Set Model for Image Classification , 1999, International Journal of Computer Vision.

[86]  Gabriele Moser,et al.  Enhanced Dictionary-Based SAR Amplitude Distribution Estimation and Its Validation With Very High-Resolution Data , 2011, IEEE Geoscience and Remote Sensing Letters.

[87]  Jean-Francois Mangin,et al.  Detection of linear features in SAR images: application to road network extraction , 1998, IEEE Trans. Geosci. Remote. Sens..

[88]  Zoltan Kato,et al.  Video Object Segmentation Using a Multicue Markovian Model , 2005 .

[89]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[90]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[91]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[92]  Rama Chellappa,et al.  Markov Random Fields and Neural Networks with Applications to Early Vision Problems , 1991 .

[93]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[94]  Hanna M. Wallach,et al.  Conditional Random Fields: An Introduction , 2004 .

[95]  Wojciech Pieczynski,et al.  SEM algorithm and unsupervised statistical segmentation of satellite images , 1993, IEEE Trans. Geosci. Remote. Sens..

[96]  Bill Triggs,et al.  Scene Segmentation with CRFs Learned from Partially Labeled Images , 2007, NIPS.

[97]  Josiane Zerubia,et al.  Detection of Object Motion Regions in Aerial Image Pairs With a Multilayer Markovian Model , 2009, IEEE Transactions on Image Processing.

[98]  Ian H. Jermyn,et al.  A Markov Random Field model for extracting near-circular shapes , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[99]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[100]  Shan Liu-Yu Yu Reconnaissance de formes par vision par ordinateur : application a l'identification des foraminiferes planctoniques , 1992 .

[101]  A. Kokaram Motion picture restoration , 1998 .

[102]  Josiane Zerubia,et al.  DPA: a deterministic approach to the MAP problem , 1995, IEEE Trans. Image Process..

[103]  Haim H. Permuter,et al.  A study of Gaussian mixture models of color and texture features for image classification and segmentation , 2006, Pattern Recognit..

[104]  Wojciech Pieczynski,et al.  Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[105]  Shan Yu,et al.  A Game Strategy Approach for Image Labeling , 1995, Comput. Vis. Image Underst..

[106]  Sanguthevar Rajasekaran,et al.  On the Convergence Time of Simulated Annealing , 1990 .

[107]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[108]  Josiane Zerubia,et al.  Maximum Likelihood Estimation of Markov Random Field Parameters Using Markov Chain Monte Carlo Algorithms , 1997, EMMCVPR.

[109]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[110]  Gabriele Moser,et al.  Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[111]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[112]  Zsolt Török,et al.  Live Cell Segmentation in Fluorescence Microscopy via Graph Cut , 2010, 2010 20th International Conference on Pattern Recognition.

[113]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[114]  Helge J. Ritter,et al.  Adaptive color segmentation-a comparison of neural and statistical methods , 1997, IEEE Trans. Neural Networks.

[115]  É. Mémin,et al.  Algorithmes et architectures paralleles pour les approches markoviennes en analyse d'images , 1993 .

[116]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[117]  Josiane Zerubia,et al.  Detection de contours et restauration d'image par des algorithmes deterministes de relaxation. Mise en oeuvre sur la machine a connexions CM2 , 1991 .

[118]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[119]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[120]  Fabrice Heitz,et al.  Restriction of a Markov random field on a graph and multiresolution image analysis , 1994 .

[121]  Josiane Zerubia,et al.  Unsupervised parallel image classification using Markovian models , 1999, Pattern Recognit..

[122]  Donald Geman,et al.  Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[123]  Vladimir Pavlovic,et al.  A graphical model framework for coupling MRFs and deformable models , 2004, CVPR 2004.

[124]  Alan L. Yuille,et al.  A common framework for image segmentation , 1990, International Journal of Computer Vision.

[125]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[126]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[127]  F. Y. Wu The Potts model , 1982 .

[128]  Gabriele Moser,et al.  High resolution SAR-image classification by Markov random fields and finite mixtures , 2010, Electronic Imaging.

[129]  Pushmeet Kohli,et al.  P³ & Beyond: Move Making Algorithms for Solving Higher Order Functions , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[130]  D. Cooper,et al.  SimpleParallel Hierarchical andRelaxation Algorithms forSegmenting Noncausal MarkovianRandom Fields , 1987 .

[131]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[132]  Hiroshi Ishikawa,et al.  Transformation of General Binary MRF Minimization to the First-Order Case , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[133]  Paul W. Fieguth,et al.  Multiscale methods for the segmentation and reconstruction of signals and images , 2000, IEEE Trans. Image Process..

[134]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[135]  Josiane Zerubia,et al.  Multi-temperature annealing: a new approach for the energy-minimization of hierarchical Markov random field models , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[136]  Vladimir Kolmogorov,et al.  Minimizing Nonsubmodular Functions with Graph Cuts-A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[137]  Jacco C. Noordam,et al.  High-speed potato grading and quality inspection based on a color vision system , 2000, Electronic Imaging.

[138]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[139]  L. Pottier,et al.  Optimization of positive generalized polynomials under constraints. , 1998 .

[140]  Francoise J. Preteux,et al.  Hierarchical Markov random field models applied to image analysis: a review , 1995, Optics + Photonics.

[141]  F. Heitz,et al.  Multiscale Markov random fields and constrained relaxation in low level image analysis , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[142]  Gabriele Moser,et al.  Supervised High-Resolution Dual-Polarization SAR Image Classification by Finite Mixtures and Copulas , 2011, IEEE Journal of Selected Topics in Signal Processing.

[143]  Zoltan Kato,et al.  Unsupervised segmentation of color textured images using a multilayer MRF model , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[144]  Tamás Szirányi,et al.  Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[145]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[146]  Rama Chellappa,et al.  Maximum a posteriori classification of multifrequency, multilook, synthetic aperture radar intensity data , 1993 .

[147]  P. Pérez,et al.  Parallel visual motion analysis using multiscale Markov random fields , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[148]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[149]  Zoltan Kato,et al.  Segmentation of color images via reversible jump MCMC sampling , 2008, Image Vis. Comput..

[150]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[151]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[152]  C Chen,et al.  Constraint factor graph cut–based active contour method for automated cellular image segmentation in RNAi screening , 2008, Journal of microscopy.

[153]  Josiane Zerubia,et al.  Image classification using Markov random fields with two new relaxation methods : deterministic pseudo annealing and modified metropolis dynamics , 1992 .

[154]  Josiane Zerubia,et al.  Fully Bayesian image segmentation-an engineering perspective , 1997, Proceedings of International Conference on Image Processing.

[155]  Peter J. W. Rayner,et al.  Unsupervised image segmentation using Markov random field models , 1997, Pattern Recognit..

[156]  Masatoshi Okutomi,et al.  Comparison of image alignment on hexagonal and square lattices , 2010, 2010 IEEE International Conference on Image Processing.

[157]  Olivier D. Faugeras,et al.  Improving Consistency and Reducing Ambiguity in Stochastic Labeling: An Optimization Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[158]  John W. Woods,et al.  Two-dimensional discrete Markovian fields , 1972, IEEE Trans. Inf. Theory.

[159]  Rémi Ronfard,et al.  Relaxation d'images de classification et modèles de la physique statistique , 1992 .

[160]  Federico Girosi,et al.  Parallel and deterministic algorithms from MRFs: surface reconstruction and integration , 1990, ECCV.

[161]  D. Mumford The Bayesian Rationale for Energy Functionals 1 , 1994 .

[162]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[163]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[164]  F. R. Hansen,et al.  Image segmentation using simple markov field models , 1982, Computer Graphics and Image Processing.

[165]  Martial Hebert,et al.  Discriminative Fields for Modeling Spatial Dependencies in Natural Images , 2003, NIPS.

[166]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[167]  Zhuowen Tu,et al.  Image Parsing: Unifying Segmentation, Detection, and Recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[168]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[169]  S. Mitter,et al.  On sampling methods and annealing algorithms , 1990 .

[170]  Christopher M. Brown,et al.  The theory and practice of Bayesian image labeling , 1990, International Journal of Computer Vision.

[171]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[172]  J. Zerubia,et al.  A Three-layer MRF model for Object Motion Detection in Airborne Images , 2007 .

[173]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[174]  Nicolas Vandenbroucke,et al.  Color image segmentation by supervised pixel classification in a color texture feature space. Application to soccer image segmentation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[175]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[176]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[177]  Edward J. Delp,et al.  A Cost Minimization Approach to Edge Detection Using Simulated Annealing , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[178]  Yunmei Chen,et al.  Using Prior Shapes in Geometric Active Contours in a Variational Framework , 2002, International Journal of Computer Vision.

[179]  Jean-Marc Odobez,et al.  MRF-based motion segmentation exploiting a 2D motion model robust estimation , 1995, Proceedings., International Conference on Image Processing.

[180]  B. Chalmond Modeling and inverse problems in image analysis , 2003 .

[181]  Pushmeet Kohli,et al.  Graph Cut Based Inference with Co-occurrence Statistics , 2010, ECCV.

[182]  François Charot,et al.  Efficient Parallel Nonlinear Multigrid Algorithms for Low-Level Vision Applications , 1995, J. Parallel Distributed Comput..

[183]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[184]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[185]  A. Gasull,et al.  Hierarchical segmentation using compound Gauss-Markov random fields , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[186]  Mubarak Shah,et al.  Object based segmentation of video using color, motion and spatial information , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[187]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[188]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[189]  Chee Sun Won,et al.  A parallel image segmentation algorithm using relaxation with varying neighborhoods and its mapping to array processors , 1987, Computer Vision Graphics and Image Processing.

[190]  José L. Marroquín,et al.  Probabilistic solution of inverse problems , 1985 .

[191]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[192]  Lalit Gupta,et al.  A gaussian-mixture-based image segmentation algorithm , 1998, Pattern Recognit..

[193]  P. L. Dobruschin The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .

[194]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[195]  H. B. Mitchell Markov Random Fields , 1982 .

[196]  Josiane Zerubia,et al.  Mean field approximation using compound Gauss-Markov random field for edge detection and image restoration , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[197]  Polina Golland,et al.  CellProfiler Analyst: data exploration and analysis software for complex image-based screens , 2008, BMC Bioinformatics.

[198]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.