Mechanical Design Optimization for Multi-Finger Haptic Devices Applied to Virtual Grasping Manipulation

This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation.

[1]  William Harwin,et al.  A high bandwidth interface for haptic human computer interaction , 2001 .

[2]  Haruhisa Kawasaki,et al.  Five-fingered haptic interface robot: HIRO III , 2009, World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[3]  Tsuneo Yoshikawa,et al.  Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment , 1994, IEEE Trans. Robotics Autom..

[4]  M. Buss,et al.  A New Admittance-Type Haptic Interface for Bimanual Manipulations , 2008, IEEE/ASME Transactions on Mechatronics.

[5]  Mark R. Cutkosky,et al.  On grasp choice, grasp models, and the design of hands for manufacturing tasks , 1989, IEEE Trans. Robotics Autom..

[6]  Ron Daniel,et al.  Specification and design of input devices for teleoperation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  Jure Cas,et al.  Virtual User Interface for the Remote Control of a Nano- Robotic Cell Using a Haptic-Device , 2010 .

[8]  Dale A. Lawrence Stability and transparency in bilateral teleoperation , 1993, IEEE Trans. Robotics Autom..

[9]  Sungchul Kang,et al.  Development of a six DOF haptic master for teleoperation of a mobile manipulator , 2010 .

[10]  Vincent Hayward,et al.  Performance Measures for Haptic Interfaces , 1996 .

[11]  Kenneth J. Waldron,et al.  Mechanical Characterization of the Immersion Corp. Haptic, Bimanual, Surgical Simulator Interface , 2002, ISER.

[12]  Il Hong Suh,et al.  Optimal design and development of a five-bar finger with redundant actuation , 2001 .

[13]  Manuel Ferre,et al.  Estimation of Normal and Tangential Manipulation Forces by Using Contact Force Sensors , 2010, EuroHaptics.

[14]  J. Merlet Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots , 2005, ISRR.

[15]  Jason A. Droll,et al.  Task demands control acquisition and storage of visual information. , 2005, Journal of experimental psychology. Human perception and performance.

[16]  Jordi Barrio,et al.  Unimanual and bimanual weight perception of virtual objects with a new multi-finger haptic interface , 2011, Brain Research Bulletin.

[17]  Zafer Bingul,et al.  Comparative study of performance indices for fundamental robot manipulators , 2006, Robotics Auton. Syst..

[18]  Septimiu E. Salcudean,et al.  Optimal kinematic design of a haptic pen , 2001 .

[19]  Septimiu E. Salcudean,et al.  Fast constrained global minimax optimization of robot parameters , 1998, Robotica.

[20]  Clément Gosselin,et al.  A Global Performance Index for the Kinematic Optimization of Robotic Manipulators , 1991 .

[21]  Jorge Barrio,et al.  Segmentation of Bimanual Virtual Object Manipulation Tasks Using Multifinger Haptic Interfaces , 2011, IEEE Transactions on Instrumentation and Measurement.

[22]  Soo S. Lee,et al.  Design of a general purpose 6-DOF haptic interface , 2003 .

[23]  H. Asada,et al.  A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design , 1983 .

[24]  Tsuneo Yoshikawa,et al.  Dynamic manipulability of robot manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[25]  M. Ferre,et al.  Haptic Device for Capturing and Simulating Hand Manipulation Rehabilitation , 2011, IEEE/ASME Transactions on Mechatronics.

[26]  Makoto Sato,et al.  Evaluation of Two-Handed Multi-Finger Haptic Device SPIDAR-8; , 2001 .

[27]  Martin Buss,et al.  Development and Evaluation of a Device for the Haptic Rendering of Rotatory Car Doors , 2011, IEEE Transactions on Industrial Electronics.

[28]  Volkan Patoglu,et al.  A Multi-criteria Design Optimization Framework for Haptic Interfaces , 2008, 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[29]  J. Cervantes-Sánchez,et al.  On the workspace, assembly configurations and singularity curves of the RRRRR-type planar manipulator , 2000 .

[30]  William S. Harwin,et al.  Force shading and bump mapping using the friction cone algorithm , 2005, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.

[31]  Jorge Barrio,et al.  MasterFinger: Multi-finger Haptic Interface for Collaborative Environments , 2008, EuroHaptics.

[32]  Jorge Barrio,et al.  Sensorized thimble for haptics applications , 2009, 2009 IEEE International Conference on Mechatronics.

[33]  T. L. Brooks,et al.  Telerobotic response requirements , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[34]  Tsuneo Yoshikawa Translational and rotational manipulability of robotic manipulators , 1991, Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation.

[35]  Jinsong Wang,et al.  Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms , 2006 .

[36]  Michael Goldfarb,et al.  The effect of force saturation on the haptic perception of detail , 2002 .

[37]  Rafael Aracil,et al.  Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors , 2011, Sensors.

[38]  Javier Ortego,et al.  Human hand descriptions and gesture recognition for object manipulation , 2010, Computer methods in biomechanics and biomedical engineering.

[39]  Jungwon Yoon,et al.  Design, fabrication, and evaluation of a new haptic device using a parallel mechanism , 2001 .

[40]  Rafael Aracil,et al.  Multifinger haptic interface for bimanual manipulation of virtual objects , 2009, 2009 IEEE International Workshop on Haptic Audio visual Environments and Games.

[41]  Xin-Jun Liu,et al.  Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms , 2006 .

[42]  Nigel W. John,et al.  The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art , 2011, IEEE Transactions on Haptics.

[43]  Marco Ceccarelli,et al.  A Multi-Objective Optimization of a Robotic Arm for Service Tasks , 2010 .

[44]  John Kenneth Salisbury,et al.  The Intuitive/sup TM/ telesurgery system: overview and application , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).