Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA.

[1]  Carl R Walkley,et al.  Genetically engineered mouse models and human osteosarcoma , 2012, Clinical Sarcoma Research.

[2]  Paul A Meyers,et al.  Outcome for adolescent and young adult patients with osteosarcoma , 2012, Cancer.

[3]  A. D. Dei Tos,et al.  A "twist box" code of p53 inactivation: twist box: p53 interaction promotes p53 degradation. , 2012, Cancer cell.

[4]  Anne-Marie Cleton-Jansen,et al.  Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data , 2012, Genes, chromosomes & cancer.

[5]  Geert Carmeliet,et al.  Hypoxia-driven pathways in bone development, regeneration and disease , 2012, Nature Reviews Rheumatology.

[6]  Jennifer J Westendorf,et al.  Update on Wnt signaling in bone cell biology and bone disease. , 2012, Gene.

[7]  W. Sellers A Blueprint for Advancing Genetics-Based Cancer Therapy , 2011, Cell.

[8]  Marc Ladanyi,et al.  Advances in sarcoma genomics and new therapeutic targets , 2011, Nature Reviews Cancer.

[9]  T. Martin,et al.  Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. , 2011, Blood.

[10]  M. Mclaughlin,et al.  Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression , 2011, Cell.

[11]  K. Kunii,et al.  PDK1 attenuation fails to prevent tumor formation in PTEN-deficient transgenic mouse models. , 2011, Cancer research.

[12]  Johannes Zuber,et al.  A Rapid and Scalable System for Studying Gene Function in Mice Using Conditional RNA Interference , 2011, Cell.

[13]  Benjamin R Arenkiel,et al.  Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. , 2011, Cancer cell.

[14]  P. Pandolfi,et al.  PTEN level in tumor suppression: how much is too little? , 2011, Cancer research.

[15]  Jane E. Visvader,et al.  Cells of origin in cancer , 2011, Nature.

[16]  A. Kondo,et al.  THE PRESENCE OF TRAIL–OPG COMPLEX IN HUMAN OSTEOSARCOMA AND HUMAN SALIVARY GLAND ADENOCARCINOMA , 2011, Journal of immunoassay & immunochemistry.

[17]  Christof Fellmann,et al.  Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi , 2011, Nature Biotechnology.

[18]  H. Saya,et al.  c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis , 2010, Oncogene.

[19]  T. Triche,et al.  Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice. , 2010, The Journal of clinical investigation.

[20]  Ralph Müller,et al.  Guidelines for assessment of bone microstructure in rodents using micro–computed tomography , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[21]  Pier Paolo Pandolfi,et al.  Subtle variations in Pten dose determine cancer susceptibility , 2010, Nature Genetics.

[22]  A. Cleton-Jansen,et al.  Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways , 2009, British Journal of Cancer.

[23]  A. Miyawaki,et al.  Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow , 2009, The Journal of experimental medicine.

[24]  L. Schomburg,et al.  Transgenic mice expressing small interfering RNA against Gata4 point to a crucial role of Gata4 in the heart and gonads. , 2009, Journal of molecular endocrinology.

[25]  P. Lin,et al.  Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. , 2009, Carcinogenesis.

[26]  S. Altmeyer-Morel,et al.  Gene expression profiling of alpha‐radiation‐induced rat osteosarcomas: Identification of dysregulated genes involved in radiation‐induced tumorigenesis of bone , 2009, International journal of cancer.

[27]  K. Hankenson,et al.  Wnt11 Promotes Osteoblast Maturation and Mineralization through R-spondin 2* , 2009, Journal of Biological Chemistry.

[28]  L. Donehower,et al.  Notch signaling contributes to the pathogenesis of human osteosarcomas. , 2009, Human molecular genetics.

[29]  L. Donehower,et al.  MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. , 2009, Cancer research.

[30]  S. Lowe,et al.  Senescence of Activated Stellate Cells Limits Liver Fibrosis , 2008, Cell.

[31]  M. Bouxsein,et al.  Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage , 2008, Proceedings of the National Academy of Sciences.

[32]  F. Alt,et al.  Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. , 2008, Genes & development.

[33]  Jason I. Herschkowitz,et al.  ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. , 2007, Cancer cell.

[34]  David A. Tuveson,et al.  Maximizing mouse cancer models , 2007, Nature Reviews Cancer.

[35]  S. Lowe,et al.  Tissue-specific and reversible RNA interference in transgenic mice , 2007, Nature Genetics.

[36]  Tsutomu Ohta,et al.  Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma , 2007, Modern Pathology.

[37]  Malay Haldar,et al.  A conditional mouse model of synovial sarcoma: insights into a myogenic origin. , 2007, Cancer cell.

[38]  J. Mesirov,et al.  Metagene projection for cross-platform, cross-species characterization of global transcriptional states , 2007, Proceedings of the National Academy of Sciences.

[39]  Carlos Cordon-Cardo,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2007, Nature.

[40]  A. McMahon,et al.  Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors , 2006, Development.

[41]  Qiang Wu,et al.  p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling , 2006, The Journal of cell biology.

[42]  Piero Picci,et al.  Adjuvant and neoadjuvant chemotherapy for osteosarcoma of the extremities: 27 year experience at Rizzoli Institute, Italy. , 2005, European journal of cancer.

[43]  Neil Sebire,et al.  A molecular map of mesenchymal tumors , 2005, Genome Biology.

[44]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[45]  A. Trumpp,et al.  Conditional Mutation of Rb Causes Cell Cycle Defects without Apoptosis in the Central Nervous System , 2003, Molecular and Cellular Biology.

[46]  P. Sorensen,et al.  Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas , 2003, Genes, chromosomes & cancer.

[47]  Sundeep Khosla,et al.  The Roles of Osteoprotegerin and Osteoprotegerin Ligand in the Paracrine Regulation of Bone Resorption , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[48]  D. Felsher,et al.  Reversible tumorigenesis by MYC in hematopoietic lineages. , 1999, Molecular cell.

[49]  M. Mass,et al.  CpG methylation inactivates the transcriptional activity of the promoter of the human p53 tumor suppressor gene. , 1997, Biochemical and biophysical research communications.

[50]  T. Martin,et al.  Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcoma , 1976, Nature.