Structural basis of substrate recognition and translocation by human very long-chain fatty acid transporter ABCD1

[1]  S. Kemp,et al.  Structure and Function of the ABCD1 Variant Database: 20 Years, 940 Pathogenic Variants, and 3400 Cases of Adrenoleukodystrophy , 2022, Cells.

[2]  D. Hassabis,et al.  AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models , 2021, Nucleic Acids Res..

[3]  A. Alam,et al.  Structures of the human peroxisomal fatty acid transporter ABCD1 in a lipid environment , 2021, Communications Biology.

[4]  Xiaochun Li,et al.  Structural basis of acyl-CoA transport across the peroxisomal membrane by human ABCD1 , 2021, Cell Research.

[5]  Weixi Xiong,et al.  ATP and Substrate Binding Regulates Conformational Changes of Human Peroxisomal ABC Transporter ALDP , 2021, bioRxiv.

[6]  F. van Petegem,et al.  Cryo-EM structures of the ABCA4 importer reveal mechanisms underlying substrate binding and Stargardt disease , 2021, Nature Communications.

[7]  Jianlin Lei,et al.  Structure insights of the human peroxisomal ABC transporter ALDP , 2021, bioRxiv.

[8]  K. Locher,et al.  Structures of ABCB4 provide insight into phosphatidylcholine translocation , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Kavukcuoglu,et al.  Highly accurate protein structure prediction for the human proteome , 2021, Nature.

[10]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[11]  D. Trompier,et al.  Peroxisomal ABC Transporters: An Update , 2021, International journal of molecular sciences.

[12]  R. Tampé,et al.  De novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition , 2021, eLife.

[13]  X. Gong,et al.  Structural basis of substrate recognition and translocation by human ABCA4 , 2021, Nature Communications.

[14]  T. So,et al.  The lysosomal protein ABCD4 can transport vitamin B12 across liposomal membranes in vitro , 2021, The Journal of biological chemistry.

[15]  Q. Luo,et al.  Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB , 2020, Nature Structural & Molecular Biology.

[16]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[17]  R. Tampé,et al.  Structural and Mechanistic Principles of ABC Transporters. , 2020, Annual review of biochemistry.

[18]  R. Tampé,et al.  A single power stroke by ATP binding drives substrate translocation in a heterodimeric ABC transporter , 2020, eLife.

[19]  Y. Fujiwara,et al.  Hexacosenoyl-CoA is the most abundant very long-chain acyl-CoA in ATP binding cassette transporter D1-deficient cells[S] , 2020, Journal of Lipid Research.

[20]  Sjors H.W. Scheres,et al.  Amyloid structure determination in RELION-3.1 , 2019, bioRxiv.

[21]  Rebecca F Thompson,et al.  Collection, pre-processing and on-the-fly analysis of data for high-resolution, single-particle cryo-electron microscopy , 2018, Nature Protocols.

[22]  C. Rock,et al.  Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins , 2018, The Journal of Biological Chemistry.

[23]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[24]  Benjamin D. Sellers,et al.  Structural basis for dual-mode inhibition of the ABC transporter MsbA , 2018, Nature.

[25]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[26]  T. Walz,et al.  Structural basis of MsbA-mediated lipopolysaccharide transport , 2017, Nature.

[27]  M. Fransen,et al.  The Peroxisome-Mitochondria Connection: How and Why? , 2017, International journal of molecular sciences.

[28]  G. Lucchi,et al.  Peroxisomal ATP-binding cassette transporters form mainly tetramers , 2017, The Journal of Biological Chemistry.

[29]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[30]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[31]  J. Reymond,et al.  Structure and mechanism of an active lipid-linked oligosaccharide flippase , 2015, Nature.

[32]  M. Schrader,et al.  Peroxisome-mitochondria interplay and disease , 2015, Journal of Inherited Metabolic Disease.

[33]  A. Moser,et al.  A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. , 2015, Human molecular genetics.

[34]  M. Morita,et al.  Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: common features in eukaryotic organisms. , 2014, Biochemical and biophysical research communications.

[35]  H. Waterham,et al.  A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. , 2014, Biochimica et biophysica acta.

[36]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[37]  C. Wiesinger,et al.  Impaired Very Long-chain Acyl-CoA β-Oxidation in Human X-linked Adrenoleukodystrophy Fibroblasts Is a Direct Consequence of ABCD1 Transporter Dysfunction* , 2013, The Journal of Biological Chemistry.

[38]  E. Shoubridge,et al.  Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism , 2012, Nature Genetics.

[39]  N. Shimozawa,et al.  ABC subfamily D proteins and very long chain fatty acid metabolism as novel targets in adrenoleukodystrophy. , 2011, Current drug targets.

[40]  H. Waterham,et al.  Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation. , 2011, Biochimica et biophysica acta.

[41]  E. Génin,et al.  Substrate Specificity Overlap and Interaction between Adrenoleukodystrophy Protein (ALDP/ABCD1) and Adrenoleukodystrophy-related Protein (ALDRP/ABCD2)* , 2011, The Journal of Biological Chemistry.

[42]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[43]  D A Agard,et al.  Automated data collection for electron microscopic tomography. , 2010, Methods in enzymology.

[44]  Stéphane Fourcade,et al.  A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. , 2009, American journal of physiology. Endocrinology and metabolism.

[45]  H. Waterham,et al.  The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl–CoA esters , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  M. Morita,et al.  Hydrophobic Regions Adjacent to Transmembrane Domains 1 and 5 Are Important for the Targeting of the 70-kDa Peroxisomal Membrane Protein* , 2007, Journal of Biological Chemistry.

[47]  H. Kato,et al.  Role of Pex19p in the targeting of PMP70 to peroxisome. , 2005, Biochimica et biophysica acta.

[48]  Stephan Lorenzen,et al.  Function of the PEX19-binding Site of Human Adrenoleukodystrophy Protein as Targeting Motif in Man and Yeast , 2005, Journal of Biological Chemistry.

[49]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[50]  P. Landgraf,et al.  Targeting of the human adrenoleukodystrophy protein to the peroxisomal membrane by an internal region containing a highly conserved motif. , 2003, European journal of cell biology.

[51]  Piero Rinaldo,et al.  Fatty acid oxidation disorders. , 2002, Annual review of physiology.

[52]  A. Rzhetsky,et al.  The human ATP-binding cassette (ABC) transporter superfamily. , 2001, Genome research.

[53]  A. Dutta-Roy,et al.  Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding/transport proteins , 2000, Cellular and Molecular Life Sciences CMLS.

[54]  R. Benarous,et al.  Homo- and Heterodimerization of Peroxisomal ATP-binding Cassette Half-transporters* , 1999, The Journal of Biological Chemistry.

[55]  H. Moser,et al.  Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls , 1999, Annals of neurology.

[56]  J. Mandel,et al.  Adrénoleucodystrophie liée à l'X , 2007 .

[57]  J. Mandel,et al.  A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  H. Moser,et al.  Altered expression of ALDP in X-linked adrenoleukodystrophy. , 1995, American journal of human genetics.

[59]  Jean Mosser,et al.  Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters , 1993, Nature.

[60]  T. Hashimoto,et al.  The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. , 1990, The Journal of biological chemistry.

[61]  K. Johnson An Update. , 1984, Journal of food protection.

[62]  G. Mannaerts,et al.  Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. , 1979, The Journal of biological chemistry.

[63]  K. Suzuki,et al.  FATTY ACID ABNORMALITY IN ADRENOLEUKODYSTROPHY , 1976, Journal of neurochemistry.