Future paths for integer programming and links to artificial intelligence

Abstract Integer programming has benefited from many innovations in models and methods. Some of the promising directions for elaborating these innovations in the future may be viewed from a framework that links the perspectives of artificial intelligence and operations research. To demonstrate this, four key areas are examined: 1. (1) controlled randomization, 2. (2) learning strategies, 3. (3) induced decomposition and 4. (4) tabu search. Each of these is shown to have characteristics that appear usefully relevant to developments on the horizon.

[1]  Avron Barr,et al.  The Handbook of Artificial Intelligence , 1982 .

[2]  Yadolah Dodge,et al.  Mathematical Programming In Statistics , 1981 .

[3]  Darwin Klingman,et al.  Improved Computer-Based Planning Techniques. Part II , 1979 .

[4]  J. Kennington,et al.  Reoptimization procedures for bounded variable primal simplex network algorithms , 1986 .

[5]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[6]  M. Rao Cluster Analysis and Mathematical Programming , 1971 .

[7]  Ramchandran Jaikumar,et al.  A COMPUTERIZED VEHICLE ROUTING APPLICATION , 1982 .

[8]  H. P. Williams,et al.  Model Building in Mathematical Programming , 1979 .

[9]  H. Crowder,et al.  Cluster Analysis: An Application of Lagrangian Relaxation , 1979 .

[10]  Patrick D. Krolak,et al.  A man-machine approach toward solving the traveling salesman problem , 1970, DAC '70.

[11]  Fred Glover,et al.  Dynamic strategies for branch and bound , 1976 .

[12]  R. Meyer Integer and mixed-integer programming models: General properties , 1975 .

[13]  J. K. Lowe Modelling with Integer Variables. , 1984 .

[14]  G. Nemhauser,et al.  Integer Programming , 2020 .

[15]  Douglass J. Wilde,et al.  Foundations of Optimization. , 1967 .

[16]  Fred Glover,et al.  Technical Note - Equivalence of the 0-1 Integer Programming Problem to Discrete Generalized and Pure Networks , 1980, Oper. Res..

[17]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[18]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[19]  F. Glover Parametric branch and bound , 1978 .

[20]  Hanif D. Sherali,et al.  Optimization with disjunctive constraints , 1980 .

[21]  Darwin Klingman,et al.  IMPROVED COMPUTER-BASED PLANNING TECHNIQUES , 1977 .

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[24]  Fred Glover,et al.  A Netform System for Resource Planning in the U.S. Bureau of Land Management , 1984 .

[25]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[26]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[27]  Patrick Henry Winston Artificial Intelligence, 2nd Edition , 1984, Addison-Wesley series in computer science.

[28]  Barr and Feigenbaum Edward A. Avron,et al.  The Handbook of Artificial Intelligence , 1981 .

[29]  A. M. Geoffrion,et al.  Multicommodity Distribution System Design by Benders Decomposition , 1974 .

[30]  Robert G. Jeroslow,et al.  Representability in mixed integer programmiing, I: Characterization results , 1987, Discret. Appl. Math..

[31]  Peter L. Hammer,et al.  Facet of regular 0–1 polytopes , 1975, Math. Program..

[32]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  A. Kolen Combinatorial optimization algorithm and complexity: Prentice-Hall, Englewood Cliffs, 1982, 496 pages, $49.50 , 1983 .

[34]  Chou-Hong J. Chen,et al.  A Primal Simplex Approach to Pure Processing Networks , 1986 .

[35]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[36]  Laurence A. Wolsey,et al.  Technical Note - Facets and Strong Valid Inequalities for Integer Programs , 1976, Oper. Res..

[37]  M. Padberg Covering, Packing and Knapsack Problems , 1979 .

[38]  A. Ali,et al.  The equal flow problem , 1988 .

[39]  Fred Glover,et al.  Interactive decision software and computer graphics for architectural and space planning , 1985 .

[40]  Darwin Klingman,et al.  Integrating modeling, algorithm design, and computational implementation to solve a large-scale nonlinear mixed integer programming problem , 1986 .

[41]  Bruce A. McCarl,et al.  A HEURISTIC FOR GENERAL INTEGER PROGRAMMING , 1974 .

[42]  E. Balas DISJUNCTIVE PROGRAMMING: CUTTING PLANES FROM LOGICAL CONDITIONS , 1975 .

[43]  Robert E. Bixby,et al.  An Almost Linear-Time Algorithm for Graph Realization , 1988, Math. Oper. Res..

[44]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[45]  Gautam Mitra Investigation of some branch and bound strategies for the solution of mixed integer linear programs , 1973, Math. Program..

[46]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[47]  Richard C. Larson,et al.  Model Building in Mathematical Programming , 1979 .

[48]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[49]  B. Golden,et al.  Using simulated annealing to solve routing and location problems , 1986 .

[50]  Gerald G. Brown,et al.  Extracting embedded generalized networks from linear programming problems , 1985, Math. Program..

[51]  Michael Engquist,et al.  Computational comparison of two solution procedures for allocation/processing networks , 1986 .

[52]  R. McBride,et al.  Solving embedded generalized network problems , 1985 .

[53]  Fred W. Glover,et al.  The general employee scheduling problem. An integration of MS and AI , 1986, Comput. Oper. Res..

[54]  Robert G. Jeroslow,et al.  Cutting-Plane Theory: Disjunctive Methods , 1977 .

[55]  Fred W. Glover,et al.  Layering strategies for creating exploitable structure in linear and integer programs , 1988, Math. Program..

[56]  C. A. Trauth,et al.  Practical Aspects of Integer Linear Programming , 1966 .

[57]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .

[58]  A. N. Elshafei,et al.  Note--On the Use of Fictitious Bounds in Tree Search Algorithms , 1977 .

[59]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[60]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[61]  Harvey J. Greenberg,et al.  Computer-assisted analysis and model simplification , 1981 .

[62]  Ronald L. Rardin,et al.  Some relationships between lagrangian and surrogate duality in integer programming , 1979, Math. Program..

[63]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[64]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[65]  Judea Pearl,et al.  Heuristics - intelligent search strategies for computer problem solving , 1984, Addison-Wesley series in artificial intelligence.

[66]  J. R. Walters Studies in Integer Programming , 1978 .

[67]  Robert E. Bixby,et al.  Converting Linear Programs to Network Problems , 1980, Math. Oper. Res..

[68]  R. Bixby Recent Algorithms for Two Versions of Graph Realization and Remarks on Applications to Linear Programming , 1984 .

[69]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[70]  C. Roads,et al.  The Handbook of Artificial Intelligence, Volume 1 , 1982 .

[71]  Laurence A. Wolsey,et al.  Coefficient reduction for inequalities in 0–1 variables , 1974, Math. Program..

[72]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[73]  Nicos Christofides,et al.  Algorithms for Large-scale Travelling Salesman Problems , 1972 .

[74]  D. Bertsekas Network Flows and Monotropic Optimization (R. T. Rockafellar) , 1985 .

[75]  John M. Liittschwager,et al.  Integer Programming Solution of a Classification Problem , 1978 .

[76]  S. M. Bajgier,et al.  AN EXPERIMENTAL COMPARISON OF STATISTICAL AND LINEAR PROGRAMMING APPROACHES TO THE DISCRIMINANT PROBLEM , 1982 .