Tuning Alignment Computation: An Experimental Evaluation

Conformance checking aims at assessing whether a process model and event data, recorded in an event log, conform to each other. In recent years, alignments have proven extremely useful for calculating conformance statistics. Computing optimal alignments is equivalent to solving a shortest path problem on the state space of the synchronous product net of a given Petri net and event data. State-of-the-art alignmentbased conformance checking implementations exploit the A∗-algorithm, a heuristic search method for shortest path problems, and include a wide range of parameters that likely influence their performance. In this paper, we present an exploratory empirical evaluation of parametrization of the A∗-algorithm used in alignment computation. Our initial results show that the performance of alignment computation greatly depends on adequate parametrization of the underlying search algorithm.

[1]  A Arya Adriansyah,et al.  Aligning observed and modeled behavior , 2014 .

[2]  Boudewijn F. van Dongen,et al.  Replaying history on process models for conformance checking and performance analysis , 2012, WIREs Data Mining Knowl. Discov..

[3]  Wil M. P. van der Aalst,et al.  RapidProM: Mine Your Processes and Not Just Your Data , 2017, ArXiv.

[4]  Wil M. P. van der Aalst,et al.  Single-Entry Single-Exit decomposed conformance checking , 2014, Inf. Syst..

[5]  Wil M. P. van der Aalst,et al.  Process Mining , 2016, Springer Berlin Heidelberg.

[6]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[7]  Wil M. P. van der Aalst,et al.  Decomposing Petri nets for process mining: A generic approach , 2013, Distributed and Parallel Databases.

[8]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[9]  Wil M. P. van der Aalst,et al.  Conformance checking of processes based on monitoring real behavior , 2008, Inf. Syst..

[10]  Benoît Depaire,et al.  PTandLogGenerator: A Generator for Artificial Event Data , 2016, BPM.

[11]  Josep Carmona,et al.  A Recursive Paradigm for Aligning Observed Behavior of Large Structured Process Models , 2016, BPM.

[12]  Mathias Weske,et al.  Towards Understanding Process Modeling - The Case of the BPM Academic Initiative , 2011, BPMN.

[13]  Wil M. P. van der Aalst,et al.  Scientific workflows for process mining: building blocks, scenarios, and implementation , 2015, International Journal on Software Tools for Technology Transfer.

[14]  Boudewijn F. van Dongen,et al.  XES, XESame, and ProM 6 , 2010, CAiSE Forum.

[15]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[16]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .