MEMS-tunable vertical-cavity SOAs

We present the signal gain, wavelength tuning characteristics, saturation properties, and noise figure (NF) of MEMS-based widely tunable vertical-cavity semiconductor optical amplifiers (VCSOAs) for various optical cavity designs, and we compare the theoretical results to data generated from a number of experimental devices. Using general Fabry-Pe/spl acute/rot relationships, it is possible to model both the wavelength tuning characteristics and the peak signal gain of tunable vertical-cavity amplifiers, while a rate-equation analysis is used to describe the saturation output power and NF as a function of the VCSOA resonant wavelength. Additionally, the basic design principles for an integrated electrostatic actuator are outlined. It is found that MEMS-tunable VCSOAs follow many of the same design trends as fixed-wavelength devices. However, with tunable devices, the effects of varying mirror reflectance and varying single-pass gain associated with the MEMS-based tuning mechanism lead to changing amplifier properties over the wavelength span of the device.

[2]  James S. Harris,et al.  SIMULTANEOUS OPTIMIZATION OF MEMBRANE REFLECTANCE AND TUNING VOLTAGE FOR TUNABLE VERTICAL CAVITY LASERS , 1998 .

[3]  M. Pessa,et al.  Long-wavelength monolithic GaInNAs vertical-cavity optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[4]  P. Tayebati,et al.  Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode , 1998, IEEE Photonics Technology Letters.

[5]  S. Bjorlin,et al.  Optically preamplified receiver at 10, 20, and 40 Gb/s using a 1550-nm vertical-cavity SOA , 2005, IEEE Photonics Technology Letters.

[6]  M. Larson,et al.  Microelectromechanical wavelength-tunable vertical cavity laser , 1996, 1996 54th Annual Device Research Conference Digest.

[7]  J.E. Bowers,et al.  First demonstration of a MEMS tunable vertical-cavity SOA , 2004, IEEE Photonics Technology Letters.

[8]  Michael C. Larson,et al.  Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range , 1996 .

[9]  William H. Steier,et al.  Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers , 1994 .

[10]  Vertical cavity amplifying photonic switch , 1994 .

[11]  John E. Bowers,et al.  Design and analysis of vertical-cavity semiconductor optical amplifiers , 2001 .

[12]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[13]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[14]  John E. Bowers,et al.  Carrier-confined vertical-cavity semiconductor optical amplifiers for higher gain and efficiency , 2003 .

[15]  John E. Bowers,et al.  Noise figure of vertical-cavity semiconductor optical amplifiers , 2002 .

[16]  J. Harris,et al.  Micromachined widely tunable vertical cavity laser diodes , 1998 .

[17]  John E. Bowers,et al.  GaAs to InP wafer fusion , 1995 .

[18]  Handong Sun,et al.  1.3um GaInNAs optically-pumped vertical cavity semiconductor optical amplifier , 2003 .

[19]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[21]  P. Tayebati,et al.  Widely tunable Fabry-Perot filter using Ga(Al)As-AlOx deformable mirrors , 1998, IEEE Photonics Technology Letters.

[22]  Helmut Seidel,et al.  Resonant accelerometer with self-test , 2001 .

[23]  C. Hilsum,et al.  Measurement of amplification in a GaAs injection laser , 1963 .

[24]  James S. Harris,et al.  Optomechanical model of surface micromachined tunable optoelectronic devices , 2002 .

[25]  M. Hoijer,et al.  Analysis of a VCLAD: vertical-cavity laser amplifier detector , 1995, IEEE Photonics Technology Letters.

[26]  H. Ghafouri-Shiraz Fundamentals of laser diode amplifiers , 1996 .

[27]  Hubert Halbritter,et al.  Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction , 2004 .

[28]  Static and Dynamic Characterization of Buckled Composite SiO 2 -Au Microbridges , 1999 .

[29]  J. Bowers,et al.  Wafer fusion: materials issues and device results , 1997 .

[30]  R. Bhat,et al.  Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range , 1997, IEEE Photonics Technology Letters.

[31]  Y. Matsui,et al.  Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power , 2003 .

[32]  John E. Bowers,et al.  Optically preamplified receiver at 10 Gbit/s using vertical-cavity SOA , 2001 .

[33]  M. Strassner,et al.  Investigations of growth conditions for InP suited for micro opto electro mechanical systems for data communication , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[34]  K. Streubel,et al.  Experimental demonstration of a multifunctional long-wavelength vertical-cavity laser amplifier-detector , 1998, IEEE Photonics Technology Letters.

[35]  L. Coldren,et al.  Rate Equations of Vertical-Cavity Semiconductor Optical Amplifiers , 2002 .

[36]  A. W. Jackson,et al.  High-power 1320-nm wafer-bonded VCSELs with tunnel junctions , 2003, IEEE Photonics Technology Letters.

[37]  F. Koyama,et al.  GaAlAs/GaAs active filter based on vertical cavity surface emitting laser , 1991 .

[38]  Sergey Edward Lyshevski,et al.  Mems and Nems , 2018 .

[39]  H. Hillmer,et al.  Modeling of ultrawidely tunable vertical cavity air-gap filters and VCSELs , 2003 .

[40]  E. S. Bjorlin,et al.  Design and analysis of MEMS tunable vertical-cavity semiconductor optical amplifiers , 2005, International Conference on Indium Phosphide and Related Materials, 2005.

[41]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[42]  E. S. Bjorlin,et al.  Microelectromechanical tunable long-wavelength vertical-cavity semiconductor optical amplifiers , 2004, 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials, 2004..

[43]  M. Nakamura,et al.  A proposed vertical-cavity optical repeater for optical inter-board connections , 1997, IEEE Photonics Technology Letters.

[44]  P. Kner,et al.  A long-wavelength MEMS tunable VCSEL incorporating a tunnel junction , 2003, IEEE Photonics Technology Letters.

[45]  Kent D. Choquette,et al.  Selective oxidation of buried AlGaAs versus AlAs layers , 1996 .

[46]  M. Larson,et al.  Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror , 1995, IEEE Photonics Technology Letters.

[47]  Edward K. Chan,et al.  Characterization and modeling of electrostatically actuated polysilicon micromechanical devices , 1999 .

[49]  Todd H. Stievater,et al.  Demonstration of a microelectromechanical tunable asymmetric Fabry–Pérot quantum well modulator , 2003 .

[50]  E.S. Bjorlin,et al.  Widely tunable bottom-emitting vertical-cavity SOAs , 2005, IEEE Photonics Technology Letters.

[51]  C. Chang-Hasnain,et al.  Tunable micromachined vertical cavity surface emitting laser , 1995 .

[52]  Ali Shakouri,et al.  Fused vertical couplers , 1998 .

[53]  P. Viktorovitch,et al.  Tunable InP/air gap Fabry Perot filter for wavelength division multiplex fiber optical transmission , 1999, Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362).

[54]  J. Pelesko,et al.  Modeling MEMS and NEMS , 2002 .

[55]  Tomi Jouhti,et al.  Diode-pumped 1.3um GaInNAs vertical-cavity semiconductor optical amplifier , 2003 .

[56]  E. S. Bjorlin,et al.  High output power 1540nm vertical cavity semiconductor optical amplifiers , 2004 .

[57]  Gallium arsenide micromechanics , 1993 .

[58]  B. Corbett,et al.  Vertical-cavity amplifying photonic switch at 1.5 μm , 1996, IEEE Photonics Technology Letters.

[59]  L. Coldren,et al.  Design of Fabry-Perot surface-emitting lasers with a periodic gain structure , 1989 .

[60]  Scott W. Corzine,et al.  Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors , 1992 .

[62]  Vertical microcavity optical amplifying switch , 1993 .

[63]  A. Syrbu,et al.  1.55-/spl mu/m optically pumped wafer-fused tunable VCSELs with 32-nm tuning range , 2004, IEEE Photonics Technology Letters.

[64]  Takaaki Mukai,et al.  Performance predictions for vertical-cavity semiconductor laser amplifiers , 1994 .

[65]  B. Riou,et al.  Long wavelength vertical-cavity semiconductor optical amplifiers , 2001 .

[66]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[67]  A. Baliga,et al.  High power MEMs-tunable vertical-cavity surface-emitting lasers , 2001, 2001 Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo.

[68]  R. Tucker,et al.  Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers , 2000 .

[69]  I. Sagnes,et al.  Low-cost electrothermally tunable optical microcavities based on GaAs , 2002, IEEE Photonics Technology Letters.

[70]  John E. Bowers,et al.  Optical gain-bandwidth product of vertical cavity laser amplifiers , 2001 .

[71]  Wafer bonding of 75 mm diameter GaP to AlGaInP-GaP light-emitting diode wafers , 2000 .

[72]  V. Jayaraman,et al.  Continuous-wave operation of single-transverse-mode 1310-nm VCSELs up to 115/spl deg/C , 2000, IEEE Photonics Technology Letters.

[73]  S. Bjorlin,et al.  High-temperature characteristics and tunability of long-wavelength vertical-cavity semiconductor optical amplifiers , 2003, IEEE Photonics Technology Letters.

[74]  John E. Bowers,et al.  High gain-bandwidth-product silicon heterointerface photodetector , 1997 .

[75]  P. Kner,et al.  Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure , 2004, IEEE Photonics Technology Letters.

[76]  M. Amann,et al.  Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range , 2004, IEEE Photonics Technology Letters.

[77]  Miguel V. Andrés,et al.  Nonlinear vibrations and hysteresis of micromachined silicon resonators designed as frequency-out sensors , 1987 .

[78]  H. Hillmer,et al.  Ultralow biased widely continuously tunable fabry-Perot filter , 2003, IEEE Photonics Technology Letters.

[79]  N. C. MacDonald,et al.  Fabrication of submicron high-aspect-ratio GaAs actuators , 1993 .

[80]  S. Bjorlin,et al.  High output power 1540-nm vertical-cavity semiconductor optical amplifiers , 2004, 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials, 2004..

[81]  Lih Y. Lin,et al.  Opportunities and challenges for MEMS in lightwave communications , 2002 .

[82]  N. C. MacDonald,et al.  Dynamic characterization of MEMS-tunable vertical-cavity SOAs , 2005, IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 2005..

[83]  Takaaki Mukai,et al.  Gain, frequency bandwidth, and saturation output power of AlGaAs DH laser amplifiers , 1981 .

[84]  L. Coldren,et al.  Near-room-temperature continuous-wave operation of multiple-active-region 1.55 μm vertical-cavity lasers with high differential efficiency , 2000 .

[85]  Larry A. Coldren,et al.  Vertical cavity semiconductor optical amplifiers: comparison of Fabry-Perot and rate equation approaches , 2002 .

[86]  M. Pessa,et al.  Performance comparison of GaInNAs vertical-cavity semiconductor optical amplifiers , 2005, IEEE Journal of Quantum Electronics.