Polynomial chaos representation of databases on manifolds

Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.

[1]  Christian Soize,et al.  Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields , 2009 .

[2]  Roger Ghanem,et al.  A probabilistic construction of model validation , 2008 .

[3]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[4]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[5]  Christian Soize,et al.  Polynomial Chaos Expansion of a Multimodal Random Vector , 2015, SIAM/ASA J. Uncertain. Quantification.

[6]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[7]  Ronald R. Coifman,et al.  Intrinsic modeling of stochastic dynamical systems using empirical geometry , 2015 .

[8]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[9]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[11]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[12]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[13]  Roger G. Ghanem,et al.  Basis adaptation in homogeneous chaos spaces , 2014, J. Comput. Phys..

[14]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[15]  Christian Soize,et al.  Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .

[16]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[17]  Roger G. Ghanem,et al.  Multiscale Stochastic Representation in High-Dimensional Data Using Gaussian Processes with Implicit Diffusion Metrics , 2014, DyDESS.

[18]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[19]  Roger G. Ghanem,et al.  Data-driven probability concentration and sampling on manifold , 2016, J. Comput. Phys..

[20]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[21]  Roger G. Ghanem,et al.  Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..

[22]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[23]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[24]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[25]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[26]  George Em Karniadakis,et al.  Generalized polynomial chaos and random oscillators , 2004 .

[27]  Roger Ghanem,et al.  Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions , 2008 .

[28]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[29]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[30]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[31]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[32]  Roger Ghanem,et al.  Convergence acceleration of polynomial chaos solutions via sequence transformation , 2014 .

[33]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[34]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[35]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[36]  Christian Soize,et al.  Hybrid Sampling/Spectral Method for Solving Stochastic Coupled Problems , 2013, SIAM/ASA J. Uncertain. Quantification.

[37]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[38]  Christian Soize,et al.  Computational Aspects for Constructing Realizations of Polynomial Chaos in High Dimension , 2010, SIAM J. Sci. Comput..

[39]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[40]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[41]  Christian Soize,et al.  Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .

[42]  Roger Ghanem,et al.  Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, CDC.

[43]  Christian Soize,et al.  Random field representations for stochastic elliptic boundary value problems and statistical inverse problems , 2013, European Journal of Applied Mathematics.

[44]  G. PERRIN,et al.  Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations , 2012, SIAM J. Sci. Comput..

[45]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[46]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[47]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .