Polynomial chaos representation of databases on manifolds
暂无分享,去创建一个
[1] Christian Soize,et al. Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields , 2009 .
[2] Roger Ghanem,et al. A probabilistic construction of model validation , 2008 .
[3] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[4] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[5] Christian Soize,et al. Polynomial Chaos Expansion of a Multimodal Random Vector , 2015, SIAM/ASA J. Uncertain. Quantification.
[6] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[7] Ronald R. Coifman,et al. Intrinsic modeling of stochastic dynamical systems using empirical geometry , 2015 .
[8] Richard D. Deveaux,et al. Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.
[9] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[10] R. Ghanem,et al. Polynomial Chaos in Stochastic Finite Elements , 1990 .
[11] Christian Soize,et al. Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .
[12] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[13] Roger G. Ghanem,et al. Basis adaptation in homogeneous chaos spaces , 2014, J. Comput. Phys..
[14] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[15] Christian Soize,et al. Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .
[16] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[17] Roger G. Ghanem,et al. Multiscale Stochastic Representation in High-Dimensional Data Using Gaussian Processes with Implicit Diffusion Metrics , 2014, DyDESS.
[18] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[19] Roger G. Ghanem,et al. Data-driven probability concentration and sampling on manifold , 2016, J. Comput. Phys..
[20] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[21] Roger G. Ghanem,et al. Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..
[22] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[23] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[24] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .
[25] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[26] George Em Karniadakis,et al. Generalized polynomial chaos and random oscillators , 2004 .
[27] Roger Ghanem,et al. Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions , 2008 .
[28] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[29] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[30] Roger Ghanem,et al. Stochastic model reduction for chaos representations , 2007 .
[31] Roger Ghanem,et al. Numerical solution of spectral stochastic finite element systems , 1996 .
[32] Roger Ghanem,et al. Convergence acceleration of polynomial chaos solutions via sequence transformation , 2014 .
[33] Stéphane Lafon,et al. Diffusion maps , 2006 .
[34] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[35] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[36] Christian Soize,et al. Hybrid Sampling/Spectral Method for Solving Stochastic Coupled Problems , 2013, SIAM/ASA J. Uncertain. Quantification.
[37] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[38] Christian Soize,et al. Computational Aspects for Constructing Realizations of Polynomial Chaos in High Dimension , 2010, SIAM J. Sci. Comput..
[39] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[40] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[41] Christian Soize,et al. Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .
[42] Roger Ghanem,et al. Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, CDC.
[43] Christian Soize,et al. Random field representations for stochastic elliptic boundary value problems and statistical inverse problems , 2013, European Journal of Applied Mathematics.
[44] G. PERRIN,et al. Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations , 2012, SIAM J. Sci. Comput..
[45] James C. Spall,et al. Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.
[46] Habib N. Najm,et al. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..
[47] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .