Effects of stone-made wind shelter structures over an arid nebkha foredune.

[1]  Abbas Miri,et al.  Experimental study on the effect of four single shrubs on aeolian erosion in a wind tunnel , 2022, CATENA.

[2]  A. Goudie Nebkhas: An essay in aeolian biogeomorphology , 2022, Aeolian Research.

[3]  K. Wijnberg,et al.  Deposition patterns around buildings at the beach: Effects of building spacing and orientation , 2022, Geomorphology.

[4]  M. Martínez,et al.  Environmental variables affecting an arid coastal nebkha. , 2022, The Science of the total environment.

[5]  K. Wijnberg,et al.  A Numerical Study on the Impact of Building Dimensions on Airflow Patterns and Bed Morphology around Buildings at the Beach , 2021, Journal of Marine Science and Engineering.

[6]  G. Zheng,et al.  Biogeomorphology of nebkhas in the Mu Us dune field, north-central China: Chronological and morphological results , 2021, Geomorphology.

[7]  Yongcheng Zhao,et al.  Morphodynamics of shadow dunes , 2021, Earth-Science Reviews.

[8]  P. Hesp,et al.  Nebkha development and sediment supply. , 2021, The Science of the total environment.

[9]  P. Hesp,et al.  Nebkha or not? -Climate control on foredune mode , 2021 .

[10]  K. Wijnberg,et al.  Beach-dune modelling in support of Building with Nature for an integrated spatial design of urbanized sandy shores , 2021 .

[11]  K. Wijnberg,et al.  The effect of building geometry on the size of aeolian deposition patterns: scale model experiments at the beach , 2021 .

[12]  Carolina Peña-Alonso,et al.  Spatiotemporal analysis of the impact of artificial beach structures on biogeomorphological processes in an arid beach-dune system. , 2021, Journal of environmental management.

[13]  P. Hesp,et al.  Decadal monitoring of Traganum moquinii's role on foredune morphology of an human impacted arid dunefield. , 2020, The Science of the total environment.

[14]  D. Ierodiaconou,et al.  Structure‐from‐motion photogrammetry analysis of historical aerial photography: Determining beach volumetric change over decadal scales , 2020, Earth Surface Processes and Landforms.

[15]  Xingcai Li,et al.  Nebkha dune morphology in the gobi deserts of northern China and potential implications for dust emission , 2020, Sedimentology.

[16]  X. Gao,et al.  Nebkha alignments and their implications for shadow dune elongation under unimodal wind regime , 2020 .

[17]  Jorge Cabrera-Gámez,et al.  A DIY Low-Cost Wireless Wind Data Acquisition System Used to Study an Arid Coastal Foredune , 2020, Sensors.

[18]  P. Hesp,et al.  Climate as a control on foredune mode in Southern Australia. , 2019, The Science of the total environment.

[19]  B. Bauer,et al.  The Role of Large Woody Debris in Beach‐Dune Interaction , 2019, Journal of Geophysical Research: Earth Surface.

[20]  X. Gao,et al.  Effects of Wind Velocity and Nebkha Geometry on Shadow Dune Formation , 2019, Journal of Geophysical Research: Earth Surface.

[21]  B. Bauer,et al.  Aeolian sand transport and deposition patterns within a large woody debris matrix fronting a foredune , 2019, Geomorphology.

[22]  W. Luo,et al.  Adventitious roots are key to the development of nebkhas in extremely arid regions , 2019, Plant and Soil.

[23]  Lianyou Liu,et al.  Converging Effects of Shrubs on Shadow Dune Formation and Sand Trapping , 2019, Journal of Geophysical Research: Earth Surface.

[24]  I. Delgado‐Fernandez,et al.  Airflow dynamics, vegetation and aeolian erosive processes in a shadow zone leeward of a resort in an arid transgressive dune system , 2019, Aeolian Research.

[25]  P. Hesp,et al.  Effects of artificial light on flowering of foredune vegetation. , 2019, Ecology.

[26]  R. Feagin,et al.  The role of beach and sand dune vegetation in mediating wave run up erosion , 2019, Estuarine, Coastal and Shelf Science.

[27]  Carolina Peña-Alonso,et al.  Beach vegetation as an indicator of human impacts in arid environments: Environmental conditions and landscape perception in the Canary Islands. , 2019, Journal of environmental management.

[28]  L. Fu Comparisons suggest more efforts are required to parameterize wind flow around shrub vegetation elements for predicting aeolian flux , 2019, Scientific Reports.

[29]  I. Delgado‐Fernandez,et al.  Biogeomorphological processes in an arid transgressive dunefield as indicators of human impact by urbanization. , 2019, The Science of the total environment.

[30]  X. Zou,et al.  Wind tunnel study of airflow recovery on the lee side of single plants , 2018, Agricultural and Forest Meteorology.

[31]  I. Delgado‐Fernandez,et al.  Event‐Scale Dynamics of a Parabolic Dune and Its Relevance for Mesoscale Evolution , 2018, Journal of Geophysical Research: Earth Surface.

[32]  Carolina Peña-Alonso,et al.  Aeolian Sedimentary Systems of the Canary Islands , 2018, The Spanish Coastal Systems.

[33]  J. B. Gallego-Fernández,et al.  Assessing the geomorphological vulnerability of arid beach-dune systems. , 2018, The Science of the total environment.

[34]  M. Gross Global tourism’s growing footprint , 2018, Current Biology.

[35]  P. Shi,et al.  Aerodynamic grain‐size distribution of blown sand , 2018, Sedimentology.

[36]  P. Hesp,et al.  Geomorphological changes in an arid transgressive coastal dune field due to natural processes and human impacts , 2018 .

[37]  S. Ravi,et al.  Interactions among hydrological-aeolian processes and vegetation determine grain-size distribution of sediments in a semi-arid coppice dune (nebkha) system , 2018, Journal of Arid Environments.

[38]  B. Bauer,et al.  Airflow Dynamics over a Beach and Foredune System with Large Woody Debris , 2018 .

[39]  Juha Suomalainen,et al.  Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging , 2017 .

[40]  Jerome R. Mayaud,et al.  Vegetation in Drylands: Effects on Wind Flow and Aeolian Sediment Transport , 2017 .

[41]  J. Cooper,et al.  Quantifying the role of urbanization on airflow perturbations and dunefield evolution , 2017 .

[42]  A. I. Hernández‐Cordero,et al.  Vegetation changes as an indicator of impact from tourist development in an arid transgressive coastal dune field , 2017 .

[43]  P. Hesp,et al.  Nebkha flow dynamics and shadow dune formation , 2017 .

[44]  Jerome R. Mayaud,et al.  A coupled vegetation/sediment transport model for dryland environments , 2017 .

[45]  T. Smyth A review of Computational Fluid Dynamics (CFD) airflow modelling over aeolian landforms , 2016 .

[46]  G. Wiggs,et al.  Characterizing turbulent wind flow around dryland vegetation , 2016 .

[47]  Mark W. Smith,et al.  Structure from motion photogrammetry in physical geography , 2016 .

[48]  C. McKenna Neuman,et al.  A wind tunnel study of flow structure adjustment on deformable sand beds containing a surface‐mounted obstacle , 2015 .

[49]  Emma Pérez-Chacón Espino,et al.  Vegetation, distance to the coast, and aeolian geomorphic processes and landforms in a transgressive arid coastal dune system , 2015 .

[50]  D. Jackson,et al.  Downwind effects on an arid dunefield from an evolving urbanised area , 2014 .

[51]  J. S. Andrade,et al.  Morphodynamic modeling of aeolian dunes: Review and future plans , 2014 .

[52]  Joanna M. Nield,et al.  Wind speed and sediment transport recovery in the lee of a vegetated and denuded nebkha within a nebkha dune field , 2014 .

[53]  S. Dupont,et al.  Modeling aeolian erosion in presence of vegetation , 2014 .

[54]  J. Al-awadhi The Effect of a Single Shrub on Wind Speed and Nabkhas Dune Development: A Case Study in Kuwait , 2014 .

[55]  I. Delgado‐Fernandez,et al.  Field characterization of three‐dimensional lee‐side airflow patterns under offshore winds at a beach‐dune system , 2013 .

[56]  D. Jackson,et al.  3D airflow modelling and dune migration patterns in an arid coastal dune field , 2013 .

[57]  Mark A. Fonstad,et al.  Topographic structure from motion: a new development in photogrammetric measurement , 2013 .

[58]  E. Hasi,et al.  Nebkha (coppice dune) formation and significance to environmental change reconstructions in arid and semiarid areas , 2013, Journal of Geographical Sciences.

[59]  B. Bauer,et al.  High‐frequency sediment transport responses on a vegetated foredune , 2012 .

[60]  Z. Dong,et al.  Wind tunnel simulation of the three-dimensional airflow patterns behind cuboid obstacles at different angles of wind incidence, and their significance for the formation of sand shadows , 2012 .

[61]  K. Nordstrom,et al.  Aeolian sediment transport and landforms in managed coastal systems: A review , 2011 .

[62]  K. Nordstrom,et al.  Aeolian Sediment Transport Across Beach Wrack , 2011 .

[63]  Ian J. Walker,et al.  Quantifying sand storage capacity of large woody debris on beaches using LiDAR , 2010 .

[64]  Stephen E. Darby,et al.  Linking geomorphic changes to salmonid habitat at a scale relevant to fish , 2010 .

[65]  J. Brasington,et al.  Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets , 2009 .

[66]  S. L. Sutton,et al.  Sediment entrainment to the lee of roughness elements: Effects of vortical structures , 2008 .

[67]  P. Lu,et al.  Wind tunnel simulation of the three‐dimensional airflow patterns around shrubs , 2008 .

[68]  G. Sterk,et al.  The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso , 2007 .

[69]  Anita Mehta,et al.  The dynamics of sand , 1994 .

[70]  Jon A. Peterka,et al.  Wind flow patterns about buildings , 1985 .

[71]  Patrick A. Hesp,et al.  The formation of shadow dunes , 1981 .

[72]  Julian C. R. Hunt,et al.  The effect of single buildings and structures , 1971, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[73]  Edoardo Grottoli,et al.  Structure-from-Motion-Derived Digital Surface Models from Historical Aerial Photographs: A New 3D Application for Coastal Dune Monitoring , 2021, Remote. Sens..

[74]  A. Traveset,et al.  Stone-Stacking as a Looming Threat to Rock-Dwelling Biodiversity , 2020 .

[75]  L. Vega,et al.  Caracterización de una duna costera de zona árida: Maspalomas (Gran Canaria) , 2013 .

[76]  P. M. Suárez,et al.  Características del viento en el campo de dunas de Maspalomas (Gran Canaria, islas canarias, España) , 2012 .

[77]  Luis Hernández-Calvento,et al.  Análisis de la evolución de las superficies de definición eólica en la Playa de El Inglés (Gran Canaria, Islas Canarias) mediante técnicas de fotointerpretación y teledetección (1960-2002) , 2004 .

[78]  K. Nordstrom,et al.  Considerations for control of house construction in coastal dunes , 1984 .

[79]  J. Fackrell,et al.  Parameters characterising dispersion in the near wake of buildings , 1984 .