Compact kernel sections for nonautonomous Klein–Gordon–Schrödinger equations on infinite lattices

Abstract In this paper, we study the nonautonomous Klein–Gordon–Schrodinger equations on infinite lattices. We first prove the existence of compact kernel sections for the corresponding process and then obtain an upper bound of the Kolmogorov e-entropy for these kernel sections. Finally, we establish the upper semicontinuity of the kernel sections.

[1]  Athanasios N. Yannacopoulos,et al.  Global existence and compact attractors for the discrete nonlinear Schrödinger equation , 2005 .

[2]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[3]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[4]  P. Bates,et al.  ATTRACTORS FOR STOCHASTIC LATTICE DYNAMICAL SYSTEMS , 2006 .

[5]  Raymond Kapral,et al.  Discrete models for chemically reacting systems , 1991 .

[6]  Attractors for the Klein-Gordon-Schrödinger equation , 1999 .

[7]  Bixiang Wang,et al.  Dynamics of systems on infinite lattices , 2006 .

[8]  Peter W. Bates,et al.  Attractors for Lattice Dynamical Systems , 2001, Int. J. Bifurc. Chaos.

[9]  Wenxian Shen,et al.  Lifted Lattices, Hyperbolic Structures, and Topological Disorders in Coupled Map Lattices , 1996, SIAM J. Appl. Math..

[10]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[11]  Masayoshi Tsutsumi,et al.  On coupled Klein-Gordon-Schrödinger equations, II , 1978 .

[12]  Chengkui Zhong,et al.  Attractors for partly dissipative lattice dynamic systems in l 2 ×l 2 , 2005 .

[13]  Roy,et al.  Coherence and phase dynamics of spatially coupled solid-state lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  Shui-Nee Chow,et al.  Lattice Dynamical Systems , 2003 .

[15]  Da-Bin Wang,et al.  Attractors for partly dissipative lattice dynamic systems in weighted spaces , 2007 .

[16]  Xiao-Qiang Zhao,et al.  Kernel sections for processes and nonautonomous lattice systems , 2008 .

[17]  Jianhua Sun,et al.  Dynamical behavior for stochastic lattice systems , 2006 .

[18]  James P. Keener,et al.  Propagation and its failure in coupled systems of discrete excitable cells , 1987 .

[19]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[20]  Xinfu Chen,et al.  Traveling Waves of Bistable Dynamics on a Lattice , 2003, SIAM J. Math. Anal..

[21]  Bixiang Wang,et al.  Global Attractors for the Klein–Gordon–Schrödinger Equation in Unbounded Domains , 2001 .

[22]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[23]  M. Hillert,et al.  A solid-solution model for inhomogeneous systems , 1961 .

[24]  Wenxian Shen,et al.  Traveling Waves in Time Almost Periodic Structures Governed by Bistable Nonlinearities: II. Existence , 1999 .

[25]  Shengfan Zhou,et al.  Kolmogorov entropy of global attractor for dissipative lattice dynamical systems , 2003 .

[26]  Bixiang Wang,et al.  Upper semicontinuity of attractors for the Klein-gordon-schrÖdinger equation , 2005, Int. J. Bifurc. Chaos.

[27]  Shengfan Zhou,et al.  Attractors for first order dissipative lattice dynamical systems , 2003 .

[28]  Denis Noble,et al.  Simulating cardiac sinus and atrial network dynamics on the Connection Machine , 1993 .

[29]  Yongsheng Li,et al.  Asymptotic smoothing effect of solutions to weakly dissipative Klein–Gordon–Schrödinger equations☆ , 2003 .

[30]  Wolf-Jürgen Beyn,et al.  Attractors of Reaction Diffusion Systems on Infinite Lattices , 2003 .

[31]  Shengfan Zhou,et al.  Attractors and approximations for lattice dynamical systems , 2004 .

[32]  Piotr Biler Attractors for the system of Schro¨dinger and Klein-Gordon equations with Yukawa coupling , 1990 .

[33]  Shengfan Zhou,et al.  Attractors and dimension of dissipative lattice systems , 2006 .

[34]  Thomas Erneux,et al.  Propagating waves in discrete bistable reaction-diffusion systems , 1993 .

[35]  Li Yongsheng,et al.  Attractor for Dissipative Klein–Gordon–Schrödinger Equations inR3 , 1997 .

[36]  Shui-Nee Chow,et al.  Traveling Waves in Lattice Dynamical Systems , 1998 .

[37]  Shengfan Zhou Attractors for Second Order Lattice Dynamical Systems , 2002 .

[38]  V. Chepyzhov,et al.  Attractors for Equations of Mathematical Physics , 2001 .

[39]  Erik S. Van Vleck,et al.  Attractors for lattice Fitzhugh-Nagumo systems , 2005 .

[40]  Shui-Nee Chow,et al.  Pattern formation and spatial chaos in lattice dynamical systems. II , 1995 .