Simultaneously optimized CO spillover and electronic structure of relay catalyst for efficient electrochemical C–C coupling

[1]  Zhengcui Wu,et al.  Ag+-Doped InSe Nanosheets for Membrane Electrode Assembly Electrolyzer toward Large-Current Electroreduction of CO2 to Ethanol. , 2023, Angewandte Chemie.

[2]  Jing Zhang,et al.  Synergy of Cu/C3N4 Interface and Cu Nanoparticles Dual Catalytic Regions in Electrolysis of CO to Acetic Acid. , 2023, Angewandte Chemie.

[3]  Xiaoming Sun,et al.  Synergistic Cu^+/Cu^0 on Cu_2O-Cu interfaces for efficient and selective C_2+ production in electrocatalytic CO_2 conversion , 2023, Science China Materials.

[4]  E. Hensen,et al.  Asymmetrical electrohydrogenation of CO2 to ethanol with copper–gold heterojunctions , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Feng juan Wei,et al.  Guanine-regulated proton transfer enhances CO2-to-CH4 selectivity over copper electrode , 2022, Chinese Journal of Catalysis.

[6]  Jian Liu,et al.  Tunable activity of electrocatalytic CO dimerization on strained Cu surfaces: Insights from ab initio molecular dynamics simulations , 2022, Chinese Journal of Catalysis.

[7]  S. Qiao,et al.  Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling , 2022, Nature Communications.

[8]  A. Züttel,et al.  Tandem effect of Ag@C@Cu catalysts enhances ethanol selectivity for electrochemical CO2 reduction in flow reactors , 2022, Cell Reports Physical Science.

[9]  W. Liu,et al.  Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays , 2022, Nature Communications.

[10]  G. Wang,et al.  Confined Growth of Silver–Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction , 2022, Advanced materials.

[11]  A. Bell,et al.  Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes , 2022, Nature Catalysis.

[12]  Y. Liu,et al.  Adjusting Local CO Confinement in Porous-Shell Ag@Cu Catalysts for Enhancing C-C Coupling toward CO2 Eletroreduction. , 2022, Nano letters.

[13]  Christine M. Gabardo,et al.  Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst , 2022, Nature Energy.

[14]  Y. Jiao,et al.  Stabilizing Cu2+ Ions by Solid Solutions to Promote CO2 Electroreduction to Methane. , 2022, Journal of the American Chemical Society.

[15]  Bo Li,et al.  Surface Modification of Nano-Cu2O for Controlling CO2 Electrochemical Reduction to Ethylene and Syngas. , 2022, Angewandte Chemie.

[16]  Lei Shi,et al.  Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction. , 2021, Journal of the American Chemical Society.

[17]  Suojiang Zhang,et al.  Highly Efficient Electrocatalytic CO2 Reduction to C2+ Products on a Poly(ionic liquid)-Based Cu(0)-Cu(I) Tandem Catalyst. , 2021, Angewandte Chemie.

[18]  Yue Pan,et al.  Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density , 2021, Nano Research.

[19]  Chongxiong Duan,et al.  Ultrastable Cu Catalyst for CO2 Electroreduction to Multicarbon Liquid Fuels by Tuning C-C Coupling with CuTi Subsurface. , 2021, Angewandte Chemie.

[20]  G. Ozin,et al.  Efficient CO2 electroreduction on facet-selective copper films with high conversion rate , 2021, Nature Communications.

[21]  Lei Wang,et al.  Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution , 2021, Nature Communications.

[22]  Wenping Hu,et al.  Tandem catalysis in electrochemical CO2 reduction reaction , 2021, Nano Research.

[23]  Tuo Wang,et al.  Controllable Cu0-Cu+ Sites for Electrocatalytic Reduction of Carbon Dioxide. , 2021, Angewandte Chemie.

[24]  P. Kenis,et al.  Engineering Silver‐Enriched Copper Core‐Shell Electrocatalysts to Enhance the Production of Ethylene and C2+ Chemicals from Carbon Dioxide at Low Cell Potentials , 2021, Advanced Functional Materials.

[25]  F. Calle‐Vallejo,et al.  Elucidating the Facet-Dependent Selectivity for CO2 Electroreduction to Ethanol of Cu–Ag Tandem Catalysts , 2021, ACS Catalysis.

[26]  B. Han,et al.  Hierarchical metal-polymer hybrids for enhanced CO2 electroreduction. , 2021, Angewandte Chemie.

[27]  L. Curtiss,et al.  2D Copper Tetrahydroxyquinone Conductive Metal–Organic Framework for Selective CO2 Electrocatalysis at Low Overpotentials , 2021, Advanced materials.

[28]  Q. Jiang,et al.  Boosting Production of HCOOH from CO2 Electroreduction via Bi/CeOx. , 2021, Angewandte Chemie.

[29]  J. Timoshenko,et al.  Operando Investigation of Ag‐Decorated Cu2O Nanocube Catalysts with Enhanced CO2 Electroreduction toward Liquid Products , 2021, Angewandte Chemie.

[30]  P. Kenis,et al.  Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes , 2020, Nature Catalysis.

[31]  Beomil Kim,et al.  Operando Spectroscopic Investigation of a Boron-Doped CuO Catalyst and Its Role in Selective Electrochemical C–C Coupling , 2020, ACS Applied Energy Materials.

[32]  Yousung Jung,et al.  Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene , 2020, Green Chemistry.

[33]  M. Chi,et al.  Controlling the Surface Oxidation of Cu Nanowires Improves Their Catalytic Selectivity and Stability toward C2+ Products in CO2 Reduction. , 2020, Angewandte Chemie.

[34]  Tianfu Liu,et al.  Highly Selective CO2 Electroreduction to CH4 by in situ Generated Cu2O Single-Type Sites on Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bond. , 2020, Angewandte Chemie.

[35]  Gengfeng Zheng,et al.  Electron‐Deficient Cu Sites on Cu3Ag1 Catalyst Promoting CO2 Electroreduction to Alcohols , 2020, Advanced Energy Materials.

[36]  Michael B. Ross,et al.  Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons , 2020, Joule.

[37]  Christine M. Gabardo,et al.  Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation , 2020, Nature Energy.

[38]  Souvik Roy,et al.  A Precious‐Metal‐Free Hybrid Electrolyzer for Alcohol Oxidation Coupled to CO2‐to‐Syngas Conversion , 2020, Angewandte Chemie.

[39]  F. Calle‐Vallejo,et al.  Enhancing CO2 Electroreduction to Ethanol on Copper–Silver Composites by Opening an Alternative Catalytic Pathway , 2020 .

[40]  Shuhong Yu,et al.  Protecting Copper Oxidation State via Intermediate Confinement for Selective CO2 Electroreduction to C2+ Fuels. , 2020, Journal of the American Chemical Society.

[41]  Zachary D. Hood,et al.  RETRACTED ARTICLE: Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas , 2019, Nature Communications.

[42]  E. Sargent,et al.  Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen , 2019, Nature Communications.

[43]  Miaofang Chi,et al.  Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites , 2019, Nature Communications.

[44]  S. Zakeeruddin,et al.  Selective C-C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates as Supported by Operando Raman Spectroscopy. , 2019, Journal of the American Chemical Society.

[45]  J. Rossmeisl,et al.  Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts , 2019, Nature Nanotechnology.

[46]  C. Roth,et al.  Electrodeposited AgCu Foam Catalysts for Enhanced Reduction of CO2 to CO. , 2019, ACS applied materials & interfaces.

[47]  Jinlong Gong,et al.  Ultrathin Pd-Au Shells with Controllable Alloying Degree on Pd Nanocubes toward Carbon Dioxide Reduction. , 2019, Journal of the American Chemical Society.

[48]  E. Oveisi,et al.  Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag-Cu Nanodimers. , 2019, Journal of the American Chemical Society.

[49]  Yanwei Lum,et al.  Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu , 2018 .

[50]  D. Sinton,et al.  Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2 , 2018, Nature Communications.

[51]  Christine M. Gabardo,et al.  Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction. , 2018, Journal of the American Chemical Society.

[52]  M. Janik,et al.  Existence of an Electrochemically Inert CO Population on Cu Electrodes in Alkaline pH , 2018, ACS Catalysis.

[53]  Christopher Hahn,et al.  Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide , 2018, ACS Catalysis.

[54]  J. Rossmeisl,et al.  Electrochemical CO2 Reduction: A Classification Problem. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[55]  Seunghwan Lee,et al.  Importance of Ag–Cu Biphasic Boundaries for Selective Electrochemical Reduction of CO2 to Ethanol , 2017 .

[56]  M. Shao,et al.  Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO2 Electrochemical Reduction Reaction on Cu Surfaces. , 2017, Journal of the American Chemical Society.

[57]  Dean J. Miller,et al.  Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction , 2017 .

[58]  J. Rossmeisl,et al.  Enhanced Carbon Dioxide Electroreduction to Carbon Monoxide over Defect-Rich Plasma-Activated Silver Catalysts. , 2017, Angewandte Chemie.

[59]  Michael B. Ross,et al.  Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2. , 2017, Journal of the American Chemical Society.

[60]  Wei Zhang,et al.  The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts Toward CO2 Electrochemical Reduction Reaction , 2017 .

[61]  I. Boyaci,et al.  A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy , 2012 .

[62]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[63]  Lei Wang,et al.  Protecting the state of Cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C-C coupling , 2022, Applied Catalysis B: Environmental.

[64]  Jieshan Qiu,et al.  Recent advances in innovative strategies for the CO2 electroreduction reaction , 2021 .