Development of boron doped diamond electrodes material for heavy metal ion sensor with high sensitivity and durability

[1]  M. Schreck,et al.  Heavily boron-doped diamond grown on scalable heteroepitaxial quasi-substrates: A promising single crystal material for electrochemical sensing applications , 2022, Carbon.

[2]  T. Kim,et al.  Electrochemical properties and morphology of boron-doped diamond thin films , 2022, Modern physics letters B.

[3]  M. Önal,et al.  Bismuth nanoparticles decorated on Na-montmorillonite-multiwall carbon nanotube for simultaneous determination of heavy metal ions- electrochemical methods , 2022, Journal of Electroanalytical Chemistry.

[4]  P. Westerhoff,et al.  Development of nano boron-doped diamond electrodes for environmental applications , 2022, Journal of Electroanalytical Chemistry.

[5]  T. Kondo Recent Electroanalytical Applications of Boron-Doped Diamond Electrodes , 2021, Current Opinion in Electrochemistry.

[6]  A. Beltagi,et al.  The First Utilization of Graphene Nano-Sheets and Synthesized Fe3O4 Nanoparticles as a Synergistic Electrodeposition Platform for Simultaneous Voltammetric Determination of Some Toxic Heavy Metal Ions in Various Real Environmental Water Samples , 2021, Microchemical Journal.

[7]  K. Kalantar-zadeh,et al.  Post‐Transition Metal Electrodes for Sensing Heavy Metal Ions by Stripping Voltammetry , 2021, Advanced Materials Technologies.

[8]  Xingwen Yu,et al.  In-situ graphene modified self-supported boron-doped diamond electrode for Pb(II) electrochemical detection in seawater , 2020 .

[9]  J. Hur,et al.  Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry. , 2020, Water research.

[10]  N. Jaffrezic‐Renault,et al.  Voltammetric sensor based on electrodeposited molecularly imprinted chitosan film on BDD electrodes for catechol detection in buffer and in wine samples. , 2020, Materials science & engineering. C, Materials for biological applications.

[11]  A. Kromka,et al.  Voltammetric characterization of boron-doped diamond electrodes for electroanalytical applications , 2020 .

[12]  A. Kromka,et al.  Structured and graphitized boron doped diamond electrodes: Impact on electrochemical detection of Cd2+ and Pb2+ ions , 2019 .

[13]  Afzal Shah,et al.  Amino acid functionalized glassy carbon electrode for the simultaneous detection of thallium and mercuric ions , 2019, Electrochimica Acta.

[14]  Guobao Xu,et al.  Recent developments in stripping analysis of trace metals , 2019, Current Opinion in Electrochemistry.

[15]  M. Vojs,et al.  Bismuth modified boron doped diamond electrode for simultaneous determination of Zn, Cd and Pb ions by square wave anodic stripping voltammetry: Influence of boron concentration and surface morphology , 2019, Vacuum.

[16]  B. Pejcic,et al.  Block Copolymer-Coated ATR-FTIR Spectroscopic Sensors for Monitoring Hydrocarbons in Aquatic Environments at High Temperature and Pressure , 2019, ACS Applied Polymer Materials.

[17]  M. S. Sankhla Contaminant of Heavy Metals in Groundwater & its Toxic Effects on Human Health & Environment , 2019, International Journal of Environmental Sciences & Natural Resources.

[18]  Jing-xuan Pei Development of a Boron-Doped Diamond Electrode for the Simultaneous Detection of Cd2+ and Pb2+ in Water , 2019, International Journal of Electrochemical Science.

[19]  Ke Zhang,et al.  A simple strategy for the detection of Cu(ii), Cd(ii) and Pb(ii) in water by a voltammetric sensor on a TC4A modified electrode , 2019, New Journal of Chemistry.

[20]  Guobao Xu,et al.  Stainless steel electrode for simultaneous stripping analysis of Cd(II), Pb(II), Cu(II) and Hg(II). , 2019, Talanta.

[21]  Forough Ghasemi,et al.  Anti-aggregation of gold nanoparticles for metal ion discrimination: A promising strategy to design colorimetric sensor arrays , 2018, Sensors and Actuators B: Chemical.

[22]  Jinhong Guo,et al.  Electrochemical microfluidics techniques for heavy metal ion detection. , 2018, The Analyst.

[23]  K. Haenen,et al.  Nanostructured nitrogen doped diamond for the detection of toxic metal ions , 2018, Electrochimica Acta.

[24]  Wei Wu,et al.  Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. , 2018, The Science of the total environment.

[25]  Janghee Yoon,et al.  Characteristics of Boron-Doped Diamond Electrodes Deposited on Titanium Substrate with TiNx Interlayer , 2018 .

[26]  N. Jaffrezic‐Renault,et al.  Electrochemical Determination of Cadmium, Lead, and Nickel Using a Polyphenol–Polyvinyl Chloride—Boron-Doped Diamond Electrode , 2018 .

[27]  Pavel Neužil,et al.  Nanostructured Gold Microelectrode Array for Ultrasensitive Detection of Heavy Metal Contamination. , 2018, Analytical chemistry.

[28]  Nicole Jaffrezic-Renault,et al.  Determination of trace heavy metal ions by anodic stripping voltammetry using nanofibrillated cellulose modified electrode , 2017 .

[29]  S. Palisoc,et al.  Gold nanoparticle/hexaammineruthenium/Nafion® modified glassy carbon electrodes for trace heavy metal detection in commercial hair dyes , 2017 .

[30]  J. Barek,et al.  Voltammetric Determination of Aclonifen at a Silver Amalgam Electrode in Drinking and River Water , 2017 .

[31]  Chi-cheng Ma,et al.  Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode. , 2017, Journal of colloid and interface science.

[32]  Y. Shim,et al.  Long-life Heavy Metal Ions Sensor Based on Graphene Oxide-anchored Conducting Polymer , 2017 .

[33]  M. Becker,et al.  Fabrication and characterization of boron doped diamond microelectrode arrays of varied geometry , 2016 .

[34]  Sungyool Bong,et al.  Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals , 2015 .

[35]  Huangxian Ju,et al.  Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. , 2015, Biosensors & bioelectronics.

[36]  K. Haenen,et al.  Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes , 2013 .

[37]  Nianqiang Wu,et al.  Nanostructured Sensors for Detection of Heavy Metals: A Review , 2013 .

[38]  T. Cui,et al.  Boron doped diamond electrodes based on porous Ti substrates , 2012 .

[39]  Arben Merkoçi,et al.  Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. , 2011, Chemical reviews.

[40]  Jang-Hee Yoon,et al.  Simultaneous Detection of Cd (II), Pb (II), Cu (II), and Hg (II) Ions in Dye Waste Water Using a Boron Doped Diamond Electrode with DPASV , 2010 .

[41]  V. Ralchenko,et al.  Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface , 2008 .

[42]  Nicole Jaffrezic-Renault,et al.  Anodic Stripping Voltammetry of Heavy Metals at Nanocrystalline Boron‐Doped Diamond Electrode , 2007 .

[43]  U. Griesbach,et al.  Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale⋆ , 2005 .

[44]  A. Deneuville,et al.  About the origin of the low wave number structures of the Raman spectra of heavily boron doped diamond films , 2004 .

[45]  Hani Abu Qdais,et al.  Removal of heavy metals from wastewater by membrane processes: a comparative study , 2004 .

[46]  A. Deneuville,et al.  Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy , 2003 .

[47]  Guohua Chen,et al.  High-performance Ti/BDD electrodes for pollutant oxidation. , 2003, Environmental science & technology.

[48]  N. G. Ferreira,et al.  Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems , 2002 .

[49]  Daniel M. Hawkins,et al.  Voltammetric behaviour and trace determination of copper at a mercury-free screen-printed carbon electrode. , 2002, Talanta.

[50]  M. Gonçalves,et al.  VOLTAMMETRIC BEHAVIOUR OF COPPER COMPLEXES WITH CYTOSINE AND ITS NUCLEOSIDE , 1998 .

[51]  H. P. Wu Dynamics and performance of fast linear scan anodic stripping voltammetry of cd, pb, and cu using in situ-generated ultrathin mercury films. , 1996, Analytical chemistry.

[52]  M. Branica,et al.  Square-wave voltammetry of copper–phenanthroline–tributylphosphate complex , 1994 .

[53]  J. Benaïm,et al.  Anodic stripping voltammetry of copper in natural waters: A qualitative approach to the additional peak(s) occurrence , 1993 .

[54]  L. Sigg,et al.  Influence of the medium on the polarographic behavior of Cu(II) , 1991 .