Fermi surface of LaRu 4 P 12 : A clue to the origin of the metal-insulator transition in PrRu 4 P 12

We report the de Haas\char21{}van Alphen (dHvA) effect and magnetoresistance in the filled-skutterudite superconductor ${\mathrm{LaRu}}_{4}{\mathrm{P}}_{12}$, which is a reference material of ${\mathrm{PrRu}}_{4}{\mathrm{P}}_{12}$ that exhibits a metal-insulator (M-I) transition at ${T}_{\mathrm{MI}}\ensuremath{\simeq}60\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. The observed dHvA branches for the main Fermi surface (FS) are well explained by the band-structure calculation, using the full potential linearized augmented-plane-wave method with the local-density approximation, suggesting a nesting instability with $\mathbf{q}=(1,0,0)$ in the main multiply connected FS as expected also in ${\mathrm{PrRu}}_{4}{\mathrm{P}}_{12}$. Observed cyclotron effective masses of $(2.6\ensuremath{-}11.8){m}_{0}$, which are roughly twice the calculated masses, indicate the large mass enhancement even in the La-skutterudites. Comparing the FS between ${\mathrm{LaRu}}_{4}{\mathrm{P}}_{12}$ and ${\mathrm{PrRu}}_{4}{\mathrm{P}}_{12}$, an essential role of $c\text{\ensuremath{-}}f$ hybridization cooperating with the FS nesting in driving the M-I transition in ${\mathrm{PrRu}}_{4}{\mathrm{P}}_{12}$ is clarified.

[1]  H. Sugawara,et al.  Crystal-lattice modulation of the metal–insulator transition system PrRu4P12 studied by X-ray diffraction , 2004 .

[2]  H. Yamaguchi,et al.  A study of the crystal structure at low temperature in the metal–insulator transition compound PrRu4P12 , 2004 .

[3]  H. Sugawara,et al.  Anomalous transport properties in PrRu4P12 single crystal , 2004 .

[4]  H. Sato,et al.  Time-reversal symmetry-breaking superconductivity in heavy-fermion PrOs4Sb12 detected by muon-spin relaxation. , 2003, Physical review letters.

[5]  H. Sugawara,et al.  Transport properties and the metal–insulator transition of PrRu4P12 single crystal , 2003 .

[6]  H. Sato,et al.  de Haas–van Alphen effect in LaRu4P12 , 2003 .

[7]  H. Harima,et al.  Fermi surface instability in Pr-based skutterudites , 2002 .

[8]  E. Bauer,et al.  Superconductivity and heavy fermion behavior in PrOs 4 Sb 12 , 2002 .

[9]  H. Sato,et al.  Anomalous heavy-fermion and ordered states in the filled skutterudite PrFe 4 P 12 , 2002, cond-mat/0201046.

[10]  K. Abe,et al.  Exotic heavy-fermion state in the filled skutterudite PrFe 4 P 12 uncovered by the de Haas-van Alphen effect , 2000, cond-mat/0010003.

[11]  H. Sugawara,et al.  The Fermi Surface in Filled Skutterudite RFe4P12 (R=La and Nd). , 2000 .

[12]  M. Yokoyama,et al.  The specific heat of the filled skutterudite PrRu4P12 in magnetic fields , 2000 .

[13]  T. Sakakibara,et al.  Thermal expansion of PrRu4P12 , 2000 .

[14]  T. Yagi,et al.  Superconductivity of LaRu4X12 (X = P, As and Sb) with skutterudite structure , 1999 .

[15]  T. Yagi,et al.  Electrical conductivity and superconductivity of metal phosphides with skutterudite-type structure prepared at high pressure , 1996 .

[16]  Maple,et al.  Low-temperature properties of rare-earth and actinide iron phosphide compounds MFe4P12 (M = La, Pr, Nd, and Th). , 1987, Physical review. B, Condensed matter.

[17]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .