Polynomial preserving recovery for quadratic elements on anisotropic meshes

Polynomial preserving gradient recovery technique under anisotropic meshes is further studied for quadratic elements. The analysis is performed for highly anisotropic meshes where the aspect ratios of element sides are unbounded. When the mesh is adapted to the solution that has significant changes in one direction but very little, if any, in another direction, the recovered gradient can be superconvergent. The results further explain why recovery type error estimator is robust even under nonstandard and highly distorted meshes. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011

[1]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[3]  Zhimin Zhang,et al.  The relationship of some a posteriori estimators , 1999 .

[4]  Gabriel Wittum,et al.  Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..

[5]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[6]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[7]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[8]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[9]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[10]  Jinchao Xu,et al.  Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..

[11]  Zhimin Zhang,et al.  The relationship of some a posteriori error estimators , 1998 .

[12]  W. Marsden I and J , 2012 .

[13]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[14]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[15]  Michal Křížek,et al.  On semiregular families of triangulations and linear interpolation , 1991 .

[16]  Zhimin Zhang,et al.  Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio , 2008 .