Polynomial preserving recovery for quadratic elements on anisotropic meshes
暂无分享,去创建一个
[1] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[2] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[3] Zhimin Zhang,et al. The relationship of some a posteriori estimators , 1999 .
[4] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..
[5] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[6] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .
[7] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[8] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[9] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[10] Jinchao Xu,et al. Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..
[11] Zhimin Zhang,et al. The relationship of some a posteriori error estimators , 1998 .
[12] W. Marsden. I and J , 2012 .
[13] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[14] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[15] Michal Křížek,et al. On semiregular families of triangulations and linear interpolation , 1991 .
[16] Zhimin Zhang,et al. Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio , 2008 .