Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy

[1]  Daoben Zhu,et al.  Toward High Performance n-Type Thermoelectric Materials by Rational Modification of BDPPV Backbones. , 2015, Journal of the American Chemical Society.

[2]  H. Anno,et al.  Novel Hybrid Organic Thermoelectric Materials:Three‐Component Hybrid Films Consisting of a Nanoparticle Polymer Complex, Carbon Nanotubes, and Vinyl Polymer , 2015, Advanced materials.

[3]  Yani Chen,et al.  Solution processed organic thermoelectrics: towards flexible thermoelectric modules , 2015 .

[4]  W. Xu,et al.  Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently , 2014, Advanced materials.

[5]  E. Reichmanis,et al.  Photoinduced Anisotropic Supramolecular Assembly and Enhanced Charge Transport of Poly(3‐hexylthiophene) Thin Films , 2014 .

[6]  Jing Sun,et al.  The synergic regulation of conductivity and Seebeck coefficient in pure polyaniline by chemically changing the ordered degree of molecular chains , 2014 .

[7]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[8]  M. Martín-González,et al.  Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor , 2013 .

[9]  Daoben Zhu,et al.  Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions , 2012 .

[10]  Jean-François Brun,et al.  Carbon nanotube-polyaniline nanohybrids: Influence of the carbon nanotube characteristics on the morphological, spectroscopic, electrical and thermoelectric properties , 2012 .

[11]  Jiang Chang,et al.  Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains , 2012 .

[12]  Zhiqun Lin,et al.  Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface , 2012 .

[13]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[14]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[15]  Choongho Yu,et al.  Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. , 2011, ACS nano.

[16]  Li Han,et al.  A novel high-performance photovoltaic–thermoelectric hybrid device , 2011 .

[17]  A. Majumdar,et al.  Optical Measurement of Thermal Conductivity Using Fiber Aligned Frequency Domain Thermoreflectance , 2011 .

[18]  D. Bradley,et al.  The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. , 2011, Journal of the American Chemical Society.

[19]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[20]  E. Reichmanis,et al.  Solvent evaporation induced liquid crystalline phase in poly(3-hexylthiophene). , 2011, Journal of the American Chemical Society.

[21]  D. Emin,et al.  Thermoelectric properties of conducting polymers : The case of poly(3-hexylthiophene) , 2010 .

[22]  Victor Rühle,et al.  Morphology and charge transport in conjugated polymers , 2010 .

[23]  Wenqing Zhang,et al.  Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. , 2010, ACS nano.

[24]  A. Majumdar,et al.  Simultaneous Increase in Seebeck Coefficient and Conductivity in a Doped Poly(alkylthiophene) Blend with Defined Density of States , 2010 .

[25]  Changhong Liu,et al.  A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks , 2010, Advanced materials.

[26]  Choongho Yu,et al.  Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). , 2010, ACS nano.

[27]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[28]  Kris Myny,et al.  Controlled Deposition of Highly Ordered Soluble Acene Thin Films: Effect of Morphology and Crystal Orientation on Transistor Performance , 2009, Advanced materials.

[29]  Alberto Salleo,et al.  Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. , 2009, Nature materials.

[30]  David S. Germack,et al.  Controlling the orientation of terraced nanoscale "ribbons" of a poly(thiophene) semiconductor. , 2009, ACS nano.

[31]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[32]  Han Li,et al.  Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure , 2007 .

[33]  Jean M. J. Fréchet,et al.  Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight , 2005 .

[34]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[35]  Jean M. J. Fréchet,et al.  Controlling the Field‐Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight , 2003 .

[36]  A. B. Kaiser Systematic Conductivity Behavior in Conducting Polymers: Effects of Heterogeneous Disorder , 2001 .

[37]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[38]  M. A. Cuevas-Diarte,et al.  Crystal data for 1,3,5‐trichlorobenzene and 1,3,5‐tribromobenzene at 293 K , 1984 .

[39]  B. Lotz,et al.  Epitaxial crystallization of polymers on organic and polymeric substrates , 1990 .