Rolling bearing fault diagnosis method based on time-frequency domain multidimensional vibration feature fusion
暂无分享,去创建一个
The invention provides a rolling bearing fault diagnosis algorithm based on time-frequency domain multidimensional fault feature fusion. Aiming at the respective features of vibration signals of a rolling bearing in a normal state, a roller fault state, an inner ring fault state and an outer ring fault state in a time-frequency domain, through extraction of time domain and frequency domain features, redundancy removal and re-fusion, fault features are described in an optimal way to obtain an intelligent judgment result. First, wavelet de-noising is performed on extracted original rolling bearing vibration data; then, time domain feature vectors are extracted to form a time domain feature matrix, and coefficient energy moments after wavelet packet decomposition and reconstruction are extracted to form a frequency domain feature matrix; and the time and frequency domain matrixes are further fused to obtain a time-frequency domain multidimensional fault feature matrix. Redundancy of the multidimensional feature matrix is eliminated to obtain a new multidimensional feature matrix. Then, information of multidimensional features is fused with a weighted feature index distance, and a state judgment result of the rolling bearing is obtained through the feature index distance obtained through fusion.