Travel pattern modelling and future travel behaviour prediction based on GMM and GPR

How to use historical data of public smart card to predict user behaviour attracts a lot of attention. This paper aims at modelling travel patterns and predicting future travel behaviour of metro system smart card holders. We apply Gaussian mixture model (GMM) on time series to model user behaviour. We propose a new method based on the perplexity for finite GMM and use expectation-maximisation (EM) algorithm to estimate parameters of GMM. In order to predict the future travel behaviour, we introduce the Gaussian process regression (GPR) to define distributions over GMM, which can not only tell the probability of travelling at a certain moment but also tell the reliability of the prediction. Experimental results show that our whole system in the centre of GMM and GPR can effectively mine the hidden knowledge of historical data of smart card, and thus model the travel patterns and predict future travel behaviour.