Simple Tests for Models of Dependence between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates

Evidence that asset returns are more highly correlated during volatile markets and during market downturns (see Longin and Solnik, 2001, and Ang and Chen, 2002) has lead some researchers to propose alternative models of dependence. In this paper we develop two simple goodness-of-fit tests for such models. We use these tests to determine whether the multivariate Normal or the Student’s t copula models are compatible with U.S. equity return and exchange rate data. Both tests are robust to specifications of marginal distributions, and are based on the multivariate probability integral transform and kernel density estimation. The first test is consistent but requires the estimation of a multivariate density function and is recommended for testing the dependence structure between a small number of assets. The second test may not be consistent against all alternatives but it requires kernel estimation of only a univariate density function, and hence is useful for testing the dependence structure between a large number of assets. We justify our tests for both observable multivariate strictly stationary time series and for standardized innovations of GARCH models. A simulation study demonstrates the efficacy of both tests. When applied to equity return data and exchange rate return data, we find strong evidence against the normal copula, but little evidence against the more flexible Student’s t copula.

[1]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[2]  Markus Junker,et al.  Measurement of Aggregate Risk with Copulas , 2005 .

[3]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[4]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[5]  E. Luciano,et al.  Value-At-Risk Trade-Off and Capital Allocation with Copulas , 2001 .

[6]  Lixing Zhu,et al.  Model checks for regression: an innovation process approach , 1998 .

[7]  Andrew J. Patton,et al.  Estimation of Copula Models for Time Series of Possibly Different Lengths , 2001 .

[8]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[9]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[10]  F. C. Mills,et al.  The Behavior of Prices. , 1928 .

[11]  Ling Hu Dependence patterns across financial markets: a mixed copula approach , 2006 .

[12]  J. Rosenberg Nonparametric Pricing of Multivariate Contingent Claims , 2000 .

[13]  Alan G. White,et al.  Value at Risk When Daily Changes in Market Variables are not Normally Distributed , 1998 .

[14]  P. Schönbucher,et al.  Copula-Dependent Defaults in Intensity Models , 2001 .

[15]  Andrew J. Patton Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula , 2001 .

[16]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[17]  Yongmiao Hong,et al.  Nonparametric Specification Testing for Continuous-Time Models with Application to Spot Interest Rates , 2002 .

[18]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[19]  Paul Embrechts,et al.  Using copulae to bound the Value-at-Risk for functions of dependent risks , 2003, Finance Stochastics.

[20]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[21]  Thierry Roncalli,et al.  Copulas for finance , 2000 .

[22]  Hans-Georg Müller,et al.  Smooth optimum kernel estimators near endpoints , 1991 .

[23]  D. Tjøstheim,et al.  Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality , 1995, Econometric Theory.

[24]  A Consistent Test for the Parametric Specification of the Hazard Function , 2001 .

[25]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[26]  Yannick Malevergne,et al.  Testing the Gaussian copula hypothesis for financial assets dependences , 2001, cond-mat/0111310.

[27]  Nonparametric Option Pricing by Transformation , 2002 .

[28]  Umberto Cherubini,et al.  Multivariate Option Pricing with Copulas , 2000 .

[29]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[30]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[31]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[32]  Yanqin Fan,et al.  On goodness-of-fit tests for weakly dependent processes using kernel method , 1999 .

[33]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[34]  Yanqin Fan Testing the Goodness of Fit of a Parametric Density Function by Kernel Method , 1994, Econometric Theory.

[35]  T. Roncalli,et al.  Revisiting the Dependence between Financial Markets with Copulas , 2000 .

[36]  A. Zeevi,et al.  Beyond Correlation: Extreme Co-Movements between Financial Assets , 2002 .

[37]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[38]  Jushan Bai,et al.  Testing Parametric Conditional Distributions of Dynamic Models , 2003, Review of Economics and Statistics.

[39]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[40]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[41]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[42]  R. Engle Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .

[43]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[44]  Ling Hu,et al.  Dependence Patterns across Financial Markets : Methods and Evidence ∗ , 2002 .

[45]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[46]  Paolo Zaffaroni,et al.  Pseudo-maximum likelihood estimation of ARCH(∞) models , 2005, math/0607798.

[47]  Anthony S. Tay,et al.  Evaluating Density Forecasts , 1997 .

[48]  E. Luciano,et al.  Bivariate option pricing with copulas , 2002 .

[49]  P. Doukhan Mixing: Properties and Examples , 1994 .

[50]  Anthony D. Hall,et al.  Using Bayesian Variable Selection Methods to Choose Style Factors in Global Stock Return Models , 2000 .

[51]  Andrew J. Patton (IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation , 2002 .

[52]  Stuart A. Klugman,et al.  Fitting bivariate loss distributions with copulas , 1999 .

[53]  Yiu Kuen Tse,et al.  A test for constant correlations in a multivariate GARCH model , 2000 .

[54]  Paul Embrechts,et al.  Dynamic copula models for multivariate high-frequency data in finance , 2004 .

[55]  J. MacKinnon,et al.  Estimation and inference in econometrics , 1994 .

[56]  Eric Jondeau,et al.  Conditional Dependency of Financial Series: An Application of Copulas , 2001 .

[57]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[58]  R. Engle Dynamic Conditional Correlation , 2002 .

[59]  E. Khmaladze,et al.  Martingale Approach in the Theory of Goodness-of-Fit Tests , 1982 .