Ridge regression and asymptotic minimax estimation over spheres of growing dimension
暂无分享,去创建一个
[1] Émile Borel,et al. Introduction géométrique à quelques théories physiques , 1915, The Mathematical Gazette.
[2] Lecons d'Analyse Fonctionelle. , 1925 .
[3] J. Hadamard,et al. Leçons D'Analyse Fonctionnelle , 1934, The Mathematical Gazette.
[4] F. Riesz,et al. Leçons d,analyse fonctionnelle , 1953 .
[5] A. J. Stam. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..
[6] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[7] L. Brown. Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems , 1971 .
[8] A. Baranchik. Inadmissibility of Maximum Likelihood Estimators in Some Multiple Regression Problems with Three or More Independent Variables , 1973 .
[9] Norman R. Draper,et al. Ridge Regression and James-Stein Estimation: Review and Comments , 1979 .
[10] James V. Bondar,et al. Amenability: A survey for statistical applications of hunt-stein and related conditions on groups , 1981 .
[11] P. Bickel. Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted , 1981 .
[12] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[13] D. Freedman,et al. How Many Variables Should Be Entered in a Regression Equation , 1983 .
[14] D. Freedman,et al. A dozen de Finetti-style results in search of a theory , 1987 .
[15] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[16] Lawrence D. Brown,et al. Information Inequalities for the Bayes Risk , 1990 .
[17] L. Brown. An Ancillarity Paradox Which Appears in Multiple Linear Regression , 1990 .
[18] Christian P. Robert,et al. Modified Bessel functions and their applications in probability and statistics , 1990 .
[19] L. Brown,et al. Information Inequality Bounds on the Minimax Risk (with an Application to Nonparametric Regression) , 1991 .
[20] Z. Bai,et al. Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part II. Sample Covariance Matrices , 1993 .
[21] É. Marchand. Estimation of a multivariate mean with constraints on the norm , 1993 .
[22] I. Johnstone,et al. Minimax Risk over l p-Balls for l q-error , 1994 .
[23] B. Levit,et al. On minimax filtering over ellipsoids , 1995 .
[24] J. W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices , 1995 .
[25] Ram Zamir,et al. A Proof of the Fisher Information Inequality via a Data Processing Argument , 1998, IEEE Trans. Inf. Theory.
[26] H. Alzer. Inequalities for the gamma function , 1999 .
[27] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[28] Alexander Goldenshluger,et al. Adaptive Prediction and Estimation in Linear Regression with Infinitely Many Parameters , 2001 .
[29] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[30] Jian-Feng Yao,et al. Convergence Rates of Spectral Distributions of Large Sample Covariance Matrices , 2003, SIAM J. Matrix Anal. Appl..
[31] A. Tsybakov,et al. Optimal prediction for linear regression with infinitely many parameters , 2003 .
[32] Donna L. Mohr,et al. Multiple Regression , 2002, Encyclopedia of Autism Spectrum Disorders.
[33] Noureddine El Karoui. Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.
[34] M. Nussbaum. Minimax Risk, Pinsker Bound for , 2006 .
[35] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[36] A. Tsybakov,et al. Sparsity oracle inequalities for the Lasso , 2007, 0705.3308.
[37] Zhidong Bai,et al. CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .
[38] Hannes Leeb,et al. Conditional predictive inference post model selection , 2009, 0908.3615.
[39] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[40] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[41] A. Belloni,et al. Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2010, 1009.5689.
[42] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[43] A. Dasgupta. False vs. missed discoveries, Gaussian decision theory, and the Donsker-Varadhan principle , 2010 .
[44] Cun-Hui Zhang,et al. Rate Minimaxity of the Lasso and Dantzig Selector for the lq Loss in lr Balls , 2010, J. Mach. Learn. Res..
[45] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[46] Cun-Hui Zhang,et al. Scaled sparse linear regression , 2011, 1104.4595.
[47] Noureddine El Karoui,et al. Geometric sensitivity of random matrix results: consequences for shrinkage estimators of covariance and related statistical methods , 2011, 1105.1404.
[48] Lee H. Dicker,et al. Residual variance and the signal-to-noise ratio in high-dimensional linear models , 2012, 1209.0012.
[49] Jianqing Fan,et al. Variance estimation using refitted cross‐validation in ultrahigh dimensional regression , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[50] Yin Chen,et al. Fused sparsity and robust estimation for linear models with unknown variance , 2012, NIPS.
[51] Pierpaolo Natalini,et al. On Some Inequalities for the Gamma Function , 2013 .
[52] Lee H. Dicker,et al. Optimal equivariant prediction for high-dimensional linear models with arbitrary predictor covariance , 2013 .
[53] Lee H. Dicker,et al. Variance estimation in high-dimensional linear models , 2014 .
[54] D. Donoho,et al. Minimax risk over / p-balls for / q-error , 2022 .