Isogeometric Least-Squares Collocation Method with Consistency and Convergence Analysis

[1]  J. Prochno,et al.  On Almost Everywhere Convergence of Tensor Product Spline Projections , 2013, Michigan Mathematical Journal.

[2]  Alessandro Reali,et al.  Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation , 2017, Comput. Math. Appl..

[3]  K. S. Nanjunda Rao,et al.  Bending analysis of laminated composite plates using isogeometric collocation method , 2017 .

[4]  Giancarlo Sangalli,et al.  Optimal-order isogeometric collocation at Galerkin superconvergent points , 2016, 1609.01971.

[5]  Laura De Lorenzis,et al.  The variational collocation method , 2016 .

[6]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[7]  Timon Rabczuk,et al.  An isogeometric collocation method using superconvergent points , 2015 .

[8]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[9]  Xiaoping Qian,et al.  Isogeometric analysis on triangulations , 2014, Comput. Aided Des..

[10]  Hongwei Lin,et al.  Consistency and convergence properties of the isogeometric collocation method , 2013 .

[11]  Alessandro Reali,et al.  Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations , 2013 .

[12]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[13]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[14]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[15]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[16]  B. Jiang LEAST-SQUARES MESHFREE COLLOCATION METHOD , 2012 .

[17]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[18]  W. Tao,et al.  Weighted Least-Squares Collocation Method (WLSCM) for 2-D and 3-D Heat Conduction Problems in Irregular Domains , 2011 .

[19]  Fu Xiaojin,et al.  Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .

[20]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[21]  Bernd Hamann,et al.  Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.

[22]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2010, Comput. Aided Des..

[23]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[24]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[25]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[26]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[27]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[28]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[29]  M. Afshar,et al.  Collocated discrete least squares meshless (CDLSM) method for the solution of transient and steady‐state hyperbolic problems , 2009 .

[30]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[31]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[32]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[33]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[34]  Gui-Rong Liu,et al.  A least-square radial point collocation method for adaptive analysis in linear elasticity , 2008 .

[35]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[36]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[37]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[38]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[39]  Lung-an Ying,et al.  Partial differential equations and the finite element method , 2007, Math. Comput..

[40]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[41]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[42]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[43]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[44]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[45]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[46]  Yongsik Kim,et al.  Point collocation methods using the fast moving least‐square reproducing kernel approximation , 2003 .

[47]  Ming-Wan Lu,et al.  Least‐squares collocation meshless method , 2001 .

[48]  A. Yu. Shadrin,et al.  TheL∞-norm of theL2-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture , 2001 .

[49]  Will Light,et al.  Approximation Theory in Tensor Product Spaces , 1985 .