Fractional order state equations for the control of viscoelasticallydamped structures
暂无分享,去创建一个
[1] G. Mittag-Leffler,et al. Sur la représentation analytique d’une branche uniforme d’une fonction monogène , 1901 .
[2] R. Christensen. Theory of viscoelasticity : an introduction , 1971 .
[3] B. Ross,et al. A BRIEF HISTORY AND EXPOSITION OF THE FUNDAMENTAL THEORY OF FRACTIONAL CALCULUS , 1975 .
[4] Michele Caputo,et al. Vibrations of an infinite plate with a frequency independent Q , 1976 .
[5] R. Bagley,et al. Applications of Generalized Derivatives to Viscoelasticity. , 1979 .
[6] Iu.N. Rabotnov. Elements of hereditary solid mechanics , 1980 .
[7] R. Bagley,et al. A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .
[8] Peter J. Torvik,et al. Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .
[9] R. Koeller. Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .
[10] R. Bagley,et al. On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .
[11] Peter J. Torvik,et al. Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .
[12] R. Bagley,et al. On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .
[13] R. Koeller. Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .
[14] A. Michel,et al. Stability of viscoelastic control systems , 1987, 26th IEEE Conference on Decision and Control.