Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling

Left ventricular remodeling that occurs after myocardial infarction (MI) and pressure overload is generally accepted as a determinant of the clinical course of heart failure. The molecular mechanism of this process, however, remains to be elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that plays an important role in stress-induced apoptosis. We used ASK1 knockout mice (ASK-/-) to test the hypothesis that ASK1 is involved in development of left ventricular remodeling. ASK-/- hearts showed no morphological or histological defects. Echocardiography and cardiac catheterization revealed normal global structure and function. Left ventricular structural and functional remodeling were determined 4 weeks after coronary artery ligation or thoracic transverse aortic constriction (TAC). ASK-/- had significantly smaller increases in left ventricular end-diastolic and end-systolic ventricular dimensions and smaller decreases in fractional shortening in both experimental models compared with WT mice. The number of terminal deoxynucleotidyl transferase biotin-dUDP nick end-labeling-positive myocytes after MI or TAC was decreased in ASK-/- compared with that in WT mice. Overexpression of a constitutively active mutant of ASK1 induced apoptosis in isolated rat neonatal cardiomyocytes, whereas neonatal ASK-/- cardiomyocytes were resistant to H2O2-induced apoptosis. An in vitro kinase assay showed increased ASK1 activity in heart after MI or TAC in WT mice. Thus, ASK1 plays an important role in regulating left ventricular remodeling by promoting apoptosis.

[1]  S. Solomon,et al.  The decreasing incidence of left ventricular remodeling following myocardial infarction , 1997, Basic Research in Cardiology.

[2]  K. Mani,et al.  Myocyte apoptosis: programming ventricular remodeling. , 2003, Journal of the American College of Cardiology.

[3]  M. Hori,et al.  The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. , 2002, Journal of the American College of Cardiology.

[4]  Yasushi Matsumura,et al.  Involvement of Nuclear Factor-&kgr;B and Apoptosis Signal-Regulating Kinase 1 in G-Protein–Coupled Receptor Agonist–Induced Cardiomyocyte Hypertrophy , 2002, Circulation.

[5]  T Takahashi,et al.  ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis , 2001, EMBO reports.

[6]  H. Ichijo,et al.  Execution of Apoptosis Signal-regulating Kinase 1 (ASK1)-induced Apoptosis by the Mitochondria-dependent Caspase Activation* , 2000, The Journal of Biological Chemistry.

[7]  R. Willenheimer Left ventricular remodelling and dysfunction. Can the process be prevented? , 2000, International journal of cardiology.

[8]  L. Rubin,et al.  Role of Apoptosis Signal-Regulating Kinase in Regulation of the c-Jun N-Terminal Kinase Pathway and Apoptosis in Sympathetic Neurons , 2000, Molecular and Cellular Biology.

[9]  Kazuhito Yamamoto,et al.  BCL-2 Is Phosphorylated and Inactivated by an ASK1/Jun N-Terminal Protein Kinase Pathway Normally Activated at G2/M , 1999, Molecular and Cellular Biology.

[10]  J. Ross,et al.  Loss of a gp130 Cardiac Muscle Cell Survival Pathway Is a Critical Event in the Onset of Heart Failure during Biomechanical Stress , 1999, Cell.

[11]  P. Rakic,et al.  The Jnk1 and Jnk2 Protein Kinases Are Required for Regional Specific Apoptosis during Early Brain Development , 1999, Neuron.

[12]  A. Coats,et al.  Left ventricular remodelling: common process in patients with different primary myocardial disorders. , 1999, International journal of cardiology.

[13]  S. Izumo,et al.  Apoptosis: basic mechanisms and implications for cardiovascular disease. , 1998, Circulation research.

[14]  R. Patten,et al.  Ventricular remodeling and its prevention in the treatment of heart failure. , 1998, Current opinion in cardiology.

[15]  Kohei Miyazono,et al.  Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK) 1 , 1998, The EMBO journal.

[16]  Q. Li,et al.  Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. , 1997, The Journal of clinical investigation.

[17]  R. Kitsis,et al.  Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. , 1997, The Journal of clinical investigation.

[18]  Minoru Takagi,et al.  Induction of Apoptosis by ASK1, a Mammalian MAPKKK That Activates SAPK/JNK and p38 Signaling Pathways , 1997, Science.

[19]  P. Anversa,et al.  Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. , 1996, Journal of molecular and cellular cardiology.

[20]  John Calvin Reed,et al.  Programmed myocyte cell death affects the viable myocardium after infarction in rats. , 1996, Experimental cell research.

[21]  L. Gaboury,et al.  Apoptosis in pressure overload-induced heart hypertrophy in the rat. , 1996, The Journal of clinical investigation.

[22]  J. Ross,et al.  Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy , 1991, Proceedings of the National Academy of Sciences of the United States of America.