Applied Predictive Modeling

[1]  Hesham Ahmed Hefny,et al.  Handling autism imbalanced data using synthetic minority over-sampling technique (SMOTE) , 2015, 2015 Third World Conference on Complex Systems (WCCS).

[2]  G. Waldemar,et al.  [Biomarkers for early diagnosis of Alzheimer's disease]. , 2015, Ugeskrift for laeger.

[3]  Concha Bielza,et al.  Akaike Information Criterion , 2014 .

[4]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[5]  Aixia Guo,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2014 .

[6]  Kristin L. Sainani,et al.  Logistic Regression , 2014, PM & R : the journal of injury, function, and rehabilitation.

[7]  M. Napierala What Is the Bonferroni Correction ? , 2014 .

[8]  T. Fearn Ridge Regression , 2013 .

[9]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[10]  M. El-Masri Odds ratio. , 2013, The Canadian nurse.

[11]  Wenyaw Chan,et al.  Statistical Methods in Medical Research , 2013, Model. Assist. Stat. Appl..

[12]  Alexander Golbraikh,et al.  Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling? , 2012, J. Chem. Inf. Model..

[13]  José Manuel Benítez,et al.  Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS , 2012 .

[14]  Ana I. González Acuña An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, Boosting, and Randomization , 2012 .

[15]  Szymon Jaroszewicz,et al.  Uplift Modeling in Direct Marketing , 2012 .

[16]  Charles Duhigg,et al.  How Companies Learn Your Secrets , 2012 .

[17]  Bao Rong Chang,et al.  Feature Selection and Parameter Optimization of a Fuzzy-based Stock Selection Model Using Genetic Algorithms , 2012 .

[18]  Patrick D. Surry,et al.  Real-World Uplift Modelling with Significance-Based Uplift Trees , 2012 .

[19]  M. Natália D. S. Cordeiro,et al.  Jointly Handling Potency and Toxicity of Antimicrobial Peptidomimetics by Simple Rules from Desirability Theory and Chemoinformatics , 2011, J. Chem. Inf. Model..

[20]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[21]  Clayton Springer,et al.  An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential , 2011, J. Cheminformatics.

[22]  R. Tibshirani,et al.  Penalized classification using Fisher's linear discriminant , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[23]  Trevor J. Hastie,et al.  Sparse Discriminant Analysis , 2011, Technometrics.

[24]  Ullrich Köthe,et al.  On Oblique Random Forests , 2011, ECML/PKDD.

[25]  Graham J. Williams Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery , 2011 .

[26]  Colm P. O'Donnell,et al.  Preventing over‐fitting in PLS calibration models of near‐infrared (NIR) spectroscopy data using regression coefficients , 2011 .

[27]  Nuno Ricardo Costa,et al.  Desirability function approach: A review and performance evaluation in adverse conditions , 2011 .

[28]  Chengjie Xiong,et al.  Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's Disease Diagnosis and Prognosis , 2011, PloS one.

[29]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[30]  John P. A. Ioannidis,et al.  An empirical assessment of validation practices for molecular classifiers , 2011, Briefings Bioinform..

[31]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[32]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[33]  Ricardo Cao,et al.  Nonparametric Density Estimation , 2013 .

[34]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[35]  竹内 一郎,et al.  Leave-One-Out Cross-Validation , 2014, Encyclopedia of Machine Learning and Data Mining.

[36]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[37]  Lance Chun Che Fung,et al.  Classification of Imbalanced Data by Combining the Complementary Neural Network and SMOTE Algorithm , 2010, ICONIP.

[38]  Leonardo Franco,et al.  Missing data imputation using statistical and machine learning methods in a real breast cancer problem , 2010, Artif. Intell. Medicine.

[39]  Wendy R. Sanhai,et al.  Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives , 2010, Nature Reviews Drug Discovery.

[40]  J. Huuskonen,et al.  Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology. , 2010 .

[41]  Annette M. Molinaro,et al.  partDSA: deletion/substitution/addition algorithm for partitioning the covariate space in prediction , 2010, Bioinform..

[42]  Wei-Yin Loh,et al.  Tree‐structured classifiers , 2010 .

[43]  P. Verhoest,et al.  Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. , 2010, ACS chemical neuroscience.

[44]  Vincent Lepetit,et al.  Fast Keypoint Recognition Using Random Ferns , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[46]  S. Keleş,et al.  Sparse partial least squares regression for simultaneous dimension reduction and variable selection , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[47]  K. Strimmer,et al.  Feature selection in omics prediction problems using cat scores and false nondiscovery rate control , 2009, 0903.2003.

[48]  Stratified Cross Validation , 2017, Encyclopedia of Machine Learning and Data Mining.

[49]  Sunduz Keles,et al.  Sparse Partial Least Squares Classification for High Dimensional Data , 2010, Statistical applications in genetics and molecular biology.

[50]  David Cohn,et al.  Active Learning , 2010, Encyclopedia of Machine Learning.

[51]  Anne-Laure Boulesteix,et al.  Bmc Medical Research Methodology Open Access Optimal Classifier Selection and Negative Bias in Error Rate Estimation: an Empirical Study on High-dimensional Prediction , 2022 .

[52]  Ji-Hyun Kim,et al.  Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap , 2009, Comput. Stat. Data Anal..

[53]  Aylin Alin,et al.  Comparison of PLS algorithms when number of objects is much larger than number of variables , 2009 .

[54]  Hao Yu,et al.  State of the Art in Parallel Computing with R , 2009 .

[55]  D. Holtzman,et al.  The Role of Apolipoprotein E in Alzheimer's Disease , 2009, Neuron.

[56]  C.J.H. Mann,et al.  Clinical Prediction Models: A Practical Approach to Development, Validation and Updating , 2009 .

[57]  Guojun Bu,et al.  Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy , 2009, Nature Reviews Neuroscience.

[58]  Monica Casale,et al.  CAIMAN brothers: A family of powerful classification and class modeling techniques , 2009 .

[59]  Dirk Van den Poel,et al.  Handling class imbalance in customer churn prediction , 2009, Expert Syst. Appl..

[60]  Gary Longton,et al.  Estimation and Comparison of Receiver Operating Characteristic Curves , 2009, The Stata journal.

[61]  R. Tibshirani,et al.  Covariance‐regularized regression and classification for high dimensional problems , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[62]  Stanislaw Osowski,et al.  Gene selection for cancer classification , 2009 .

[63]  J H Maindonald,et al.  Draft of Changes and Additions in a Projected 3rd Edition of Data Analysis and Graphics Using R , 2009 .

[64]  Pasi Fränti,et al.  Web Data Mining , 2009, Encyclopedia of Database Systems.

[65]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[66]  Christopher Westphal Data Mining for Intelligence, Fraud & Criminal Detection: Advanced Analytics & Information Sharing Technologies , 2008 .

[67]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[68]  Shonda Kuiper,et al.  Introduction to Multiple Regression: How Much Is Your Car Worth? , 2008 .

[69]  Robert A. Muenchen,et al.  R for SAS and SPSS Users , 2008 .

[70]  John M. Chambers,et al.  Software for Data Analysis: Programming with R , 2008 .

[71]  Robert Gentleman,et al.  R Programming for Bioinformatics , 2008 .

[72]  Jialiang Li,et al.  ROC analysis with multiple classes and multiple tests: methodology and its application in microarray studies. , 2008, Biostatistics.

[73]  M. Cooke Super Crunchers: Why Thinking-by-Numbers Is the New Way to Be Smart , 2008, Journal of Advertising Research.

[74]  K. Hornik,et al.  Model-Based Recursive Partitioning , 2008 .

[75]  Torsten Hothorn,et al.  Exploratory and Inferential Analysis of Benchmark Experiments , 2008 .

[76]  T. Hesterberg,et al.  Least angle and ℓ1 penalized regression: A review , 2008, 0802.0964.

[77]  Michael R. Chernick,et al.  Pharmaceutical Statistics Using SAS® A Practical Guide , 2008, Technometrics.

[78]  Jean-Philippe Vert,et al.  Graph kernels based on tree patterns for molecules , 2006, Machine Learning.

[79]  Phil Spector,et al.  Data manipulation with R , 2008 .

[80]  Mee Young Park,et al.  Penalized logistic regression for detecting gene interactions. , 2008, Biostatistics.

[81]  Foster J. Provost,et al.  Handling Missing Values when Applying Classification Models , 2007, J. Mach. Learn. Res..

[82]  Carolin Strobl,et al.  Unbiased split selection for classification trees based on the Gini Index , 2007, Comput. Stat. Data Anal..

[83]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[84]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[85]  William S. Rayens,et al.  PLS and dimension reduction for classification , 2007, Comput. Stat..

[86]  Taghi M. Khoshgoftaar,et al.  Experimental perspectives on learning from imbalanced data , 2007, ICML '07.

[87]  Matthew Richardson,et al.  Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.

[88]  Abhyuday Mandal,et al.  Identifying Promising Compounds in Drug Discovery: Genetic Algorithms and Some New Statistical Techniques , 2007, J. Chem. Inf. Model..

[89]  Foster J. Provost,et al.  Decision-Centric Active Learning of Binary-Outcome Models , 2007, Inf. Syst. Res..

[90]  Ron Wehrens,et al.  The pls Package: Principal Component and Partial Least Squares Regression in R , 2007 .

[91]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[92]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[93]  Trevor Hastie,et al.  Regularized linear discriminant analysis and its application in microarrays. , 2007, Biostatistics.

[94]  Peter LaPan,et al.  Impact of image segmentation on high-content screening data quality for SK-BR-3 cells , 2007, BMC Bioinformatics.

[95]  Achim Zeileis,et al.  Bias in random forest variable importance measures: Illustrations, sources and a solution , 2007, BMC Bioinformatics.

[96]  Douglas Eck,et al.  Aggregate features and ADABOOST for music classification , 2006, Machine Learning.

[97]  Dominique M. Hanssens,et al.  Modeling Customer Lifetime Value , 2006 .

[98]  Ingoo Han,et al.  Hybrid genetic algorithms and support vector machines for bankruptcy prediction , 2006, Expert Syst. Appl..

[99]  L. Buydens,et al.  Supervised Kohonen networks for classification problems , 2006 .

[100]  M. Kohler Wallace CS: Statistical and inductive inference by minimum message length , 2006 .

[101]  Robert P Freckleton,et al.  Why do we still use stepwise modelling in ecology and behaviour? , 2006, The Journal of animal ecology.

[102]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[103]  I-Cheng Yeh,et al.  Analysis of Strength of Concrete Using Design of Experiments and Neural Networks , 2006 .

[104]  Ben Ewald,et al.  Post hoc choice of cut points introduced bias to diagnostic research. , 2006, Journal of clinical epidemiology.

[105]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[106]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[107]  Abhyuday Mandal,et al.  SELC: Sequential Elimination of Level Combinations by Means of Modified Genetic Algorithms , 2006, Technometrics.

[108]  Sven Serneels,et al.  Spatial Sign Preprocessing: A Simple Way To Impart Moderate Robustness to Multivariate Estimators , 2006, J. Chem. Inf. Model..

[109]  Christopher D. Brown,et al.  Receiver operating characteristics curves and related decision measures: A tutorial , 2006 .

[110]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[111]  Daniel T. Larose,et al.  Data mining methods and models , 2006 .

[112]  Greg Ridgeway,et al.  Generalized Boosted Models: A guide to the gbm package , 2006 .

[113]  Richard Simon,et al.  Bias in error estimation when using cross-validation for model selection , 2006, BMC Bioinformatics.

[114]  Franco Lombardo,et al.  A recursive-partitioning model for blood–brain barrier permeation , 2005, J. Comput. Aided Mol. Des..

[115]  Douglas Kline,et al.  Revisiting squared-error and cross-entropy functions for training neural network classifiers , 2005, Neural Computing & Applications.

[116]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[117]  Kurt Hornik,et al.  The Design and Analysis of Benchmark Experiments , 2005 .

[118]  Timothy J. Robinson,et al.  Linear Models With R , 2005, Technometrics.

[119]  Annette M. Molinaro,et al.  Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..

[120]  S. Sathiya Keerthi,et al.  Which Is the Best Multiclass SVM Method? An Empirical Study , 2005, Multiple Classifier Systems.

[121]  Tatsuya Akutsu,et al.  Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines , 2005, J. Chem. Inf. Model..

[122]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[123]  Scott D. Kahn,et al.  Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships , 2005, Alternatives to laboratory animals : ATLA.

[124]  Darinka Brodnjak-Vončina,et al.  Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids , 2005 .

[125]  Antoine Geissbühler,et al.  SVM Modeling via a Hybrid Genetic Strategy. A Health Care Application , 2005, MIE.

[126]  Douglas W. Dwyer,et al.  EXAMPLES OF OVERFITTING ENCOUNTERED WHEN BUILDING PRIVATE FIRM DEFAULT PREDICTION MODELS , 2005 .

[127]  W. Loh,et al.  LOTUS: An Algorithm for Building Accurate and Comprehensible Logistic Regression Trees , 2004 .

[128]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[129]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[130]  Aldert H Piersma,et al.  Validation of the Postimplantation Rat Whole-embryo Culture Test in the International ECVAM Validation Study on Three In Vitro Embryotoxicity Tests , 2004, Alternatives to laboratory animals : ATLA.

[131]  Rob J Hyndman,et al.  Nonparametric confidence intervals for receiver operating characteristic curves , 2004 .

[132]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[133]  Gustavo E. A. P. A. Batista,et al.  A study of the behavior of several methods for balancing machine learning training data , 2004, SKDD.

[134]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[135]  Peter C Austin,et al.  Inflation of the type I error rate when a continuous confounding variable is categorized in logistic regression analyses , 2004, Statistics in medicine.

[136]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[137]  Pedro M. Domingos,et al.  Tree Induction for Probability-Based Ranking , 2003, Machine Learning.

[138]  David J. Hand,et al.  A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems , 2001, Machine Learning.

[139]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[140]  Leo Breiman,et al.  Randomizing Outputs to Increase Prediction Accuracy , 2000, Machine Learning.

[141]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[142]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[143]  Yong Wang,et al.  Using Model Trees for Classification , 1998, Machine Learning.

[144]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[145]  David A. Cohn,et al.  Improving generalization with active learning , 1994, Machine Learning.

[146]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[147]  P. van der Putten,et al.  A Bias-Variance Analysis of a Real World Learning Problem: The CoIL Challenge 2000 , 2004 .

[148]  Leo Breiman,et al.  Technical note: Some properties of splitting criteria , 2004, Machine Learning.

[149]  David R. Brillinger,et al.  Some data analyses using mutual information , 2004 .

[150]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[151]  B. Fortuna String Kernels , 2004 .

[152]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[153]  M. LeBlanc,et al.  Logic Regression , 2003 .

[154]  Peter A. Flach,et al.  Improving Accuracy and Cost of Two-class and Multi-class Probabilistic Classifiers Using ROC Curves , 2003, ICML.

[155]  Paul Geladi,et al.  Scatter plotting in multivariate data analysis , 2003 .

[156]  Bir Bhanu,et al.  Genetic algorithm based feature selection for target detection in SAR images , 2003, Image Vis. Comput..

[157]  Sunil J Rao,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2003 .

[158]  Jean-Michel Renders,et al.  Word-Sequence Kernels , 2003, J. Mach. Learn. Res..

[159]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[160]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[161]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[162]  Trevor Hastie,et al.  Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays , 2003 .

[163]  Douglas M. Hawkins,et al.  Assessing Model Fit by Cross-Validation , 2003, J. Chem. Inf. Comput. Sci..

[164]  M. Peruggia Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data , 2003 .

[165]  M. Radmacher,et al.  Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. , 2003, Journal of the National Cancer Institute.

[166]  Victor S. Y. Lo The true lift model: a novel data mining approach to response modeling in database marketing , 2002, SKDD.

[167]  Eric R. Ziegel,et al.  An Introduction to Generalized Linear Models , 2002, Technometrics.

[168]  Mercedes Ayuso,et al.  Detection of Automobile Insurance Fraud with Discrete Choice Models and Misclassified Claims , 2002 .

[169]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[170]  Kai Ming Ting,et al.  An Instance-weighting Method to Induce Cost-sensitive Trees , 2001 .

[171]  Geoffrey J McLachlan,et al.  Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[173]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[174]  J. Friedman Stochastic gradient boosting , 2002 .

[175]  A. J. Moores,et al.  Innovative genetic algorithms for chemoinformatics , 2002 .

[176]  Friedrich Leisch,et al.  Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis , 2002, COMPSTAT.

[177]  W. Loh,et al.  REGRESSION TREES WITH UNBIASED VARIABLE SELECTION AND INTERACTION DETECTION , 2002 .

[178]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[179]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[180]  Igor V. Tetko,et al.  Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices , 2001, J. Chem. Inf. Comput. Sci..

[181]  Gary M. Weiss,et al.  The effect of class distribution on classifier learning: an empirical study , 2001 .

[182]  Bianca Zadrozny,et al.  Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers , 2001, ICML.

[183]  Paul H. C. Eilers,et al.  Classification of microarray data with penalized logistic regression , 2001, SPIE BiOS.

[184]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[185]  S. Wold,et al.  The GIFI approach to non‐linear PLS modeling , 2001 .

[186]  R. Heyman,et al.  The Hazards of Predicting Divorce Without Crossvalidation. , 2001, Journal of marriage and the family.

[187]  Ji Zhu,et al.  Kernel Logistic Regression and the Import Vector Machine , 2001, NIPS.

[188]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[189]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[190]  Foster Provost,et al.  The effect of class distribution on classifier learning , 2001 .

[191]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[192]  E. Venkatraman,et al.  A Permutation Test to Compare Receiver Operating Characteristic Curves , 2000, Biometrics.

[193]  Todd E. Clark Can Out-of-Sample Forecast Comparisons Help Prevent Overfitting? , 2000 .

[194]  Robert C. Holte,et al.  Explicitly representing expected cost: an alternative to ROC representation , 2000, KDD '00.

[195]  Nir Friedman,et al.  Tissue classification with gene expression profiles , 2000, RECOMB '00.

[196]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[197]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[198]  Julian D. Olden,et al.  Torturing data for the sake of generality: How valid are our regression models? , 2000 .

[199]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[200]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[201]  Geoff Holmes,et al.  Generating Rule Sets from Model Trees , 1999, Australian Joint Conference on Artificial Intelligence.

[202]  Y. Freund,et al.  Adaptive game playing using multiplicative weights , 1999 .

[203]  S. Fujishima,et al.  [Systemic inflammatory response syndrome (SIRS)]. , 1999, Ryoikibetsu shokogun shirizu.

[204]  Peter Willett,et al.  Dissimilarity-Based Algorithms for Selecting Structurally Diverse Sets of Compounds , 1999, J. Comput. Biol..

[205]  Nello Cristianini,et al.  Controlling the Sensitivity of Support Vector Machines , 1999 .

[206]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[207]  I-Cheng Yeh,et al.  Modeling of strength of high-performance concrete using artificial neural networks , 1998 .

[208]  William W. Hsieh,et al.  Applying Neural Network Models to Prediction and Data Analysis in Meteorology and Oceanography. , 1998 .

[209]  Charles X. Ling,et al.  Data Mining for Direct Marketing: Problems and Solutions , 1998, KDD.

[210]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[211]  Ian H. Witten,et al.  Generating Accurate Rule Sets Without Global Optimization , 1998, ICML.

[212]  Ron Kohavi,et al.  The Case against Accuracy Estimation for Comparing Induction Algorithms , 1998, ICML.

[213]  K Gubernator,et al.  Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. , 1998, Journal of medicinal chemistry.

[214]  Kenneth O. Cogger,et al.  Neural network detection of management fraud using published financial data , 1998, Intell. Syst. Account. Finance Manag..

[215]  L. Breiman Arcing Classifiers , 1998 .

[216]  J. Leeuw,et al.  The Gifi system of descriptive multivariate analysis , 1998 .

[217]  Federico Girosi,et al.  Support Vector Machines: Training and Applications , 1997 .

[218]  Robert D. Clark,et al.  OptiSim: An Extended Dissimilarity Selection Method for Finding Diverse Representative Subsets , 1997, J. Chem. Inf. Comput. Sci..

[219]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[220]  Marko Robnik-Sikonja,et al.  An adaptation of Relief for attribute estimation in regression , 1997, ICML.

[221]  Albert Gough,et al.  High-Content Screening: A New Approach to Easing Key Bottlenecks in the Drug Discovery Process , 1997 .

[222]  R. Tibshirani,et al.  Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .

[223]  E. K. Kemsley,et al.  THE USE AND MISUSE OF CHEMOMETRICS FOR TREATING CLASSIFICATION PROBLEMS , 1997 .

[224]  S. Wold,et al.  INLR, implicit non‐linear latent variable regression , 1997 .

[225]  Bhupinder S. Dayal,et al.  Improved PLS algorithms , 1997 .

[226]  L. A. Smith,et al.  Feature Subset Selection: A Correlation Based Filter Approach , 1997, ICONIP.

[227]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[228]  W. Loh,et al.  SPLIT SELECTION METHODS FOR CLASSIFICATION TREES , 1997 .

[229]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[230]  L. Breiman Heuristics of instability and stabilization in model selection , 1996 .

[231]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[232]  J. Ross Quinlan,et al.  Bagging, Boosting, and C4.5 , 1996, AAAI/IAAI, Vol. 1.

[233]  Ron Kohavi,et al.  Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid , 1996, KDD.

[234]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[235]  Jiawei Han,et al.  Proceedings of the Second International Conference on Knowledge Discovery and Data Mining , 1996 .

[236]  J. Ross Quinlan,et al.  Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..

[237]  Kagan Tumer,et al.  Analysis of decision boundaries in linearly combined neural classifiers , 1996, Pattern Recognit..

[238]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[239]  Daniel S. Hirschberg,et al.  Small Sample Statistics for Classification Error Rates I: Error Rate Measurements , 1996 .

[240]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[241]  San Cristóbal Mateo,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .

[242]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[243]  Alexander J. Smola,et al.  Regression estimation with support vector learning machines , 1996 .

[244]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[245]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[246]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[247]  P. Good,et al.  Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses , 1995 .

[248]  M. Lawera Predictive inference : an introduction , 1995 .

[249]  D. Altman,et al.  Multiple significance tests: the Bonferroni method , 1995, BMJ.

[250]  J. Stephen Judd,et al.  Optimal stopping and effective machine complexity in learning , 1993, Proceedings of 1995 IEEE International Symposium on Information Theory.

[251]  Han van de Waterbeemd,et al.  Chemometric methods in molecular design , 1995 .

[252]  Brian D. Ripley,et al.  Statistical Ideas for Selecting Network Architectures , 1995, SNN Symposium on Neural Networks.

[253]  David L. Donoho,et al.  WaveLab and Reproducible Research , 1995 .

[254]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[255]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[256]  D G Altman,et al.  Statistics Notes: Diagnostic tests 3: receiver operating characteristic plots , 1994, BMJ.

[257]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[258]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[259]  S. Wold,et al.  A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm , 1994 .

[260]  Leslie G. Valiant,et al.  Cryptographic limitations on learning Boolean formulae and finite automata , 1994, JACM.

[261]  Randy Shepherd,et al.  Object-Oriented Programming , 1994, Lecture Notes in Computer Science.

[262]  J. Ross Quinlan,et al.  Combining Instance-Based and Model-Based Learning , 1993, ICML.

[263]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[264]  S. S. Young,et al.  Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[265]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[266]  S. Wold,et al.  PLS: Partial Least Squares Projections to Latent Structures , 1993 .

[267]  M. Hardy Creating Dummy Variables , 1993 .

[268]  S. Wold,et al.  The kernel algorithm for PLS , 1993 .

[269]  Douglas C. Montgomery,et al.  GAUGE CAPABILITY AND DESIGNED EXPERIMENTS. PART I: BASIC METHODS , 1993 .

[270]  H. Keselman,et al.  Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables , 1992 .

[271]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[272]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[273]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[274]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[275]  W. Knaus,et al.  Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. , 1992, Chest.

[276]  Daryl Pregibon,et al.  Tree-based models , 1992 .

[277]  J. R. Quinlan Learning With Continuous Classes , 1992 .

[278]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[279]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[280]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[281]  M. Stone Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least s , 1990 .

[282]  T. Hastie,et al.  Shrinking Trees , 1990 .

[283]  D. McClish Analyzing a Portion of the ROC Curve , 1989, Medical decision making : an international journal of the Society for Medical Decision Making.

[284]  J. Friedman Regularized Discriminant Analysis , 1989 .

[285]  Ronald L. Rivest,et al.  Inferring Decision Trees Using the Minimum Description Length Principle , 1989, Inf. Comput..

[286]  John Scott Bridle,et al.  Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationships to Statistical Pattern Recognition , 1989, NATO Neurocomputing.

[287]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[288]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[289]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[290]  J. Ross Quinlan,et al.  Simplifying decision trees , 1987, Int. J. Hum. Comput. Stud..

[291]  Tim Niblett,et al.  Constructing Decision Trees in Noisy Domains , 1987, EWSL.

[292]  M. E. Johnson,et al.  Generalized simulated annealing for function optimization , 1986 .

[293]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[294]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[295]  R. H. Myers Classical and modern regression with applications , 1986 .

[296]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[297]  Svante Wold,et al.  Comparison Between X-Ray Crystallographic Data and Physicochemical Parameters with Respect to Their Information about the Calcium Channel Antagonist Activity of 4-Phenyl-1,4-dihydropyridines , 1986 .

[298]  R. Cranley,et al.  Multivariate Analysis—Methods and Applications , 1985 .

[299]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[300]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[301]  Herman Wold,et al.  Systems under indirect observation : causality, structure, prediction , 1982 .

[302]  Herman Wold,et al.  Soft modelling: The Basic Design and Some Extensions , 1982 .

[303]  H. V. Henderson,et al.  Building Multiple Regression Models Interactively , 1981 .

[304]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[305]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[306]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[307]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[308]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[309]  L. S. Nelson,et al.  The Nelder-Mead Simplex Procedure for Function Minimization , 1975 .

[310]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[311]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[312]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[313]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[314]  G. Box,et al.  Transformation of the Independent Variables , 1962 .

[315]  A. W. Kimball,et al.  Errors of the Third Kind in Statistical Consulting , 1957 .

[316]  W. Youden,et al.  Index for rating diagnostic tests , 1950, Cancer.

[317]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[318]  S. de Jong,et al.  Comments on the PLS kernel algorithm , 2022 .