An explicit length scale control approach in SIMP-based topology optimization

Abstract The present paper aims to present a new approach for controlling both maximum and minimum length scales of structural members in the Solid Isotropic Material with Penalization (SIMP)-based topology optimization framework. In the proposed approach, length scale control is achieved with help of structural skeleton, which is a key concept in mathematical morphology and a powerful tool for describing structural topologies. Numerical examples show that the proposed approach does have the capability to give a complete control of the length scales of an optimal structure in an explicit and local way.

[1]  Azriel Rosenfeld,et al.  A Note on Thinning , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Ole Sigmund,et al.  Manufacturing tolerant topology optimization , 2009 .

[3]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[4]  Gengdong Cheng,et al.  Recent development in structural design and optimization , 2010 .

[5]  Y. Kim,et al.  Multi-resolution multi-scale topology optimization — a new paradigm , 2000 .

[6]  James K. Guest,et al.  Imposing maximum length scale in topology optimization , 2009 .

[7]  Franz Aurenhammer,et al.  A Novel Type of Skeleton for Polygons , 1996 .

[8]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[9]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[10]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[11]  Erik Lund,et al.  Topology Optimization - Broadening the Areas of Application , 2005 .

[12]  Michael Yu Wang,et al.  Shape feature control in structural topology optimization , 2008, Comput. Aided Des..

[13]  M. Wang,et al.  A new level set method for systematic design of hinge-free compliant mechanisms , 2008 .

[14]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[15]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[16]  Xianmin Zhang,et al.  A new level set method for topology optimization of distributed compliant mechanisms , 2012 .

[17]  Thomas A. Poulsen,et al.  Topology optimization in wavelet space , 2002 .

[18]  Thomas A. Poulsen A new scheme for imposing a minimum length scale in topology optimization , 2003 .

[19]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[20]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[21]  Xu Guo,et al.  Robust structural topology optimization considering boundary uncertainties , 2013 .

[22]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[23]  J. Petersson,et al.  Slope constrained topology optimization , 1998 .

[24]  Xu Guo,et al.  Explicit feature control in structural topology optimization via level set method , 2014 .