A comprehensive circuit-level model of vertical-cavity surface-emitting lasers

The increasing interest in vertical-cavity surface-emitting lasers (VCSEL's) requires the corresponding development of circuit-level VCSEL models for use in the design and simulation of optoelectronic applications. Unfortunately, existing models lack either the computational efficiency or the comprehensiveness warranted by circuit-level simulation. Thus, in this paper we present a comprehensive circuit-level model that accounts for the thermal and spatial dependence of a VCSEL's behavior. The model is based on multimode rate equations and empirical expressions for the thermal dependence of the active-layer gain and carrier leakage, thereby facilitating the simulation of VCSEL's in the context of an optoelectronic system. To confirm that our model is valid, we present sample simulations that demonstrate its ability to replicate typical dc, small-signal, and transient operation, including temperature-dependent light-current (LI) curves and modulation responses, multimode behavior, and diffusive turn-off transients. Furthermore, we verify our model against experimental data from four devices reported in the literature. As the results will show, we obtained excellent agreement between simulation and experiment.

[1]  J. P. Harbison,et al.  Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers , 1991 .

[2]  Kent D. Choquette,et al.  High-frequency modulation characteristics of red VCSELs , 1997 .

[3]  Arthur J. Lowery,et al.  Time-domain simulation of photonic devices, circuits, and systems , 1996, Photonics West.

[4]  R. Thornton Vertical cavity lasers for printing , 1997, 1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application.

[5]  Electrical characteristics of proton-implanted vertical-cavity surface-emitting lasers , 1998 .

[6]  G. R. Hadley,et al.  Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers , 1997 .

[7]  M. Henini,et al.  Physics of optoelectronic devices , 1997 .

[8]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[9]  John A. Neff,et al.  Analysis of vertical-cavity surface-emitting laser multimode behavior , 1997 .

[10]  N. Dutta,et al.  Performance of gain-guided surface emitting lasers with semiconductor distributed Bragg reflectors , 1991 .

[11]  Kenichi Iga,et al.  Surface emitting semiconductor lasers , 1988 .

[12]  L. Coldren,et al.  InGaAs vertical-cavity surface-emitting lasers , 1991 .

[13]  D.M. Byrne,et al.  A laser diode model based on temperature dependent rate equations , 1989, IEEE Photonics Technology Letters.

[14]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[15]  Julian Cheng,et al.  High-speed modulation characteristics and small-signal circuit modeling of deeply implanted GRINSCH-VCSELs with graded heterointerfaces , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[16]  D. M. Kuchta,et al.  Spatial hole burning and self‐focusing in vertical‐cavity surface‐emitting laser diodes , 1994 .

[17]  F. Chatenoud,et al.  Modeling of quantum-well lasers with electro-opto-thermal interaction , 1995 .

[18]  J. A. Neff VCSEL-based smart pixels for free-space optical interconnection , 1997, Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting.

[19]  K. A. Shore,et al.  Statistics of transverse mode turn-on dynamics in VCSELs , 1997 .

[20]  L. J. Norton OPTOBUSTM^ I: A production parallel fiber optical interconnect , 1997 .

[21]  P. Jessop,et al.  A relationship for temperature dependence of threshold current for 1.3-μm compressively strained-layer multiple-quantum-well lasers , 1997, IEEE Photonics Technology Letters.

[22]  L. Solymar Inhomogeneous optical waveguides , 1977, Nature.

[23]  T. Wipiejewski,et al.  Size-dependent output power saturation of vertical-cavity surface-emitting laser diodes , 1996, IEEE Photonics Technology Letters.

[24]  Marek Osiński,et al.  THERMAL EFFECTS IN VERTICAL-CAVITY SURFACE-EMITTING LASERS , 1994 .

[25]  K. A. Shore,et al.  Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes , 1995 .

[26]  H. Lu,et al.  Dynamic properties of partly gain-coupled 1.55-/spl mu/m DFB lasers , 1995 .

[27]  Jayanta Sarma,et al.  Self-consistent calculation of two-dimensional diffusion equation for a modal gain analysis of lasing modes in cylindrical VCSELs , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[28]  John P. R. David,et al.  Temperature effects in VCSELs , 1997, Photonics West.

[29]  S. Kang,et al.  A simple rate-equation-based thermal VCSEL model , 1999 .

[30]  Siu Fung Yu,et al.  Dynamic behavior of vertical-cavity surface-emitting lasers , 1996 .

[31]  Karl Joachim Ebeling,et al.  Planar proton implanted VCSEL's and fiber-coupled 2-D VCSEL arrays , 1995 .

[32]  InAlGaP vertical cavity surface emitting lasers (VCSELs): processing and performance , 1997, Conference Proceedings. 1997 International Conference on Indium Phosphide and Related Materials.

[33]  Tera bytes optical disk with electric tracking control using micro-cavity VCSEL array and PD array , 1997, 1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application.

[34]  D. M. Byrne,et al.  Accurate simulation of multifrequency semiconductor laser dynamics under gigabits-per-second modulation , 1992 .

[35]  H. Wenzel,et al.  Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers , 1994, IEEE Photonics Technology Letters.

[36]  T. Kurokawa,et al.  Flip-chip bonded 0.85-μm bottom-emitting vertical-cavity laser array on an AlGaAs substrate , 1996, IEEE Photonics Technology Letters.

[37]  S. Kang,et al.  Transforming Tucker's linearization laser rate equations to a form that has a single solution regime , 1995 .

[38]  Ming-Feng Lu,et al.  An equivalent circuit model for quantum well lasers , 1995, LEOS '95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings.

[39]  B. Streetman Solid state electronic devices , 1972 .

[40]  Brian Thibeault,et al.  Recent advances and important issues in vertical-cavity lasers , 1997, Photonics West.

[41]  Austin V. Harton,et al.  Spatially independent VCSEL models for the simulation of diffusive turn-off transients , 1999 .

[42]  A. Yariv,et al.  The effect of lateral carrier diffusion on the modulation response of a semiconductor laser , 1981 .

[43]  Siu Fung Yu,et al.  Comprehensive modeling of diffused quantum-well vertical-cavity surface-emitting lasers , 1998 .

[44]  F. Koyama,et al.  Transverse mode analysis for surface emitting laser using beam propagation method , 1991 .

[45]  Jen-Inn Chyi,et al.  Theoretical Study of the Temperature Dependence of 1.3-pm AlGaInAs-InP Multiple-Quantum-Well Lasers , 1996 .

[46]  Numerical analysis of transverse mode in gain-guided vertical cavity surface emitting lasers , 1995 .

[47]  D. A. Fraser,et al.  The physics of semiconductor devices , 1986 .

[48]  Pablo Valente Mena Circuit-Level Modeling and Simulation of Semiconductor Lasers , 1998 .

[49]  Michiharu Nakamura,et al.  Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers , 1978 .

[50]  C.W. Wilmsen,et al.  VCSEL based high performance ATM switch , 1997, 1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application.

[51]  R. Michalzik,et al.  Spatial hole burning effects in gain-guided vertical cavity laser diodes , 1993, Proceedings of LEOS '93.

[52]  G. Agrawal,et al.  Mode-partition noise in vertical-cavity surface-emitting lasers , 1997, IEEE Photonics Technology Letters.

[53]  R. O'Dowd,et al.  Two and three level optical PCM transmitter design for multigigabit systems using a relaxation oscillation technique , 1987 .

[54]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[55]  P. Shum,et al.  Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers , 1996 .

[56]  Ralph H. Johnson,et al.  High-speed characteristics of VCSELs , 1997, Photonics West.

[57]  K Furuya,et al.  Reduction of resonancelike peak in direct modulation due to carrier diffusion in injection laser. , 1978, Applied optics.

[58]  R. Jurrat,et al.  VCSELs bonded directly to foundry fabricated GaAs smart pixel arrays , 1997, IEEE Photonics Technology Letters.

[59]  Sung-Mo Kang,et al.  Rate-equation-based laser models with a single solution regime , 1997 .

[60]  Jian L. Zhou,et al.  User's Guide for CFSQP Version 2.0: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints , 1994 .

[61]  Kenichi Iga,et al.  Single transverse mode condition of surface‐emitting injection lasers , 1988 .

[62]  C. Chang-Hasnain,et al.  Transverse mode characteristics of vertical cavity surface-emitting lasers , 1990 .

[63]  Rodney S. Tucker,et al.  Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser , 1983 .

[64]  Wlodzimierz Nakwaski,et al.  Thermal aspects of efficient operation of vertical-cavity surface-emitting lasers , 1996 .

[65]  Kent D. Choquette,et al.  Comprehensive numerical modeling of vertical-cavity surface-emitting lasers , 1996 .

[66]  Daryoosh Vakhshoori,et al.  Top‐surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies , 1993 .

[67]  Visible VCSELs: recent advances and applications , 1997, 1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application.

[68]  D. J. Channin,et al.  Effect of gain saturation on injection laser switching , 1979 .

[69]  Richard Schatz Dynamics of spatial hole burning effects in DFB lasers , 1995 .

[70]  Govind P. Agrawal,et al.  Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers , 1997 .

[71]  Niloy K. Dutta,et al.  Analysis of current spreading, carrier diffusion, and transverse mode guiding in surface emitting lasers , 1990 .

[72]  K. Petermann Laser Diode Modulation and Noise , 1988 .

[73]  C.K.Y. Chun,et al.  OPTOBUS/sup TM/ I: a production parallel fiber optical interconnect , 1997, 1997 Proceedings 47th Electronic Components and Technology Conference.

[74]  Diana L. Huffaker,et al.  TRANSVERSE MODE BEHAVIOR IN NATIVE-OXIDE-DEFINED LOW THRESHOLD VERTICAL-CAVITY LASERS , 1994 .

[75]  S. A. Feld,et al.  Transverse-mode dynamics in vertical-cavity surface-emitting lasers excited by fast electrical pulses , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[76]  Sung-Mo Kang,et al.  Modeling of quantum-well lasers for computer-aided analysis of optoelectronic integrated circuits , 1990 .

[77]  R. Michalzik,et al.  Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes , 1993 .

[78]  K. Bertilsson,et al.  High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers , 1997, IEEE Photonics Technology Letters.

[79]  K. A. Shore,et al.  Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting laser diodes , 1995 .

[80]  Yikai Su,et al.  Circuit model for studying temperature effects on vertical-cavity surface-emitting laser , 1996, Conference Proceedings LEOS'96 9th Annual Meeting IEEE Lasers and Electro-Optics Society.

[81]  Circuit model for multilongitudinal-mode semiconductor lasers , 1996 .