An Analytic Approach to Special Numbers and Polynomials

The purpose of this article is to present, in a simple way, an analytic approach to special numbers and polynomials. The approach is based on the derivative polynomials. The paper is, to some extent, a review article, although it contains some new elements. In particular, it seems that some integral representations for Bernoulli numbers and Bernoulli polynomials can be seen as new.

[1]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[2]  Michael E. Hoffman DERIVATIVE POLYNOMIALS FOR TANGENT AND SECANT , 1995 .

[3]  Grzegorz Rzadkowski,et al.  Derivatives and Eulerian Numbers , 2008, Am. Math. Mon..

[4]  A. Veselov,et al.  Faulhaber and Bernoulli polynomials and solitons , 2001 .

[5]  Ghislain R. Franssens On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling Number Triangles , 2006 .

[6]  Donald E. Knuth,et al.  Johann Faulhaber and sums of powers , 1992, math/9207222.

[7]  Khristo N. Boyadzhiev Derivative Polynomials for tanh, tan, sech and sec in Explicit Form , 2007 .

[8]  Krishnaswami Alladi,et al.  The Legacy of Alladi Ramakrishnan in the Mathematical Sciences , 2010 .

[9]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[10]  Dominique Foata,et al.  Eulerian Polynomials: From Euler’s Time to the Present , 2010 .

[11]  G. Rza̧dkowski BERNOULLI NUMBERS AND SOLITONS — REVISITED , 2010 .

[12]  Djurdje Cvijovic Derivative polynomials and closed-form higher derivative formulae , 2009, Appl. Math. Comput..

[13]  Ghislain R. Franssens,et al.  Functions with derivatives given by polynomials in the function itself or a related function , 2007 .

[14]  Khristo N. Boyadzhiev Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials , 2007 .

[15]  K. Boyadzhiev A note on Bernoulli polynomials and solitons , 2007 .

[16]  Leon M. Hall,et al.  Special Functions , 1998 .

[17]  Bernoulli Numbers and Solitons , 2005, math/0503175.