Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity.

[1]  S. Boppart,et al.  Assessing the severity of psoriasis through multivariate analysis of optical images from non-lesional skin , 2020, Scientific Reports.

[2]  M. Suárez-Fariñas,et al.  Short-term transcriptional response to IL-17 Receptor-A antagonism in the treatment of Psoriasis. , 2019, The Journal of allergy and clinical immunology.

[3]  M. Kelm,et al.  Tissue Sodium Content and Arterial Hypertension in Obese Adolescents , 2019, Journal of clinical medicine.

[4]  A. Armstrong,et al.  Guselkumab versus secukinumab for the treatment of moderate-to-severe psoriasis (ECLIPSE): results from a phase 3, randomised controlled trial , 2019, The Lancet.

[5]  A. Balogh,et al.  The role of sodium in modulating immune cell function , 2019, Nature Reviews Nephrology.

[6]  M. Kleinewietfeld,et al.  High Salt Inhibits Tumor Growth by Enhancing Anti-tumor Immunity , 2019, Front. Immunol..

[7]  A. Waisman,et al.  Antagonization of IL-17A Attenuates Skin Inflammation and Vascular Dysfunction in Mouse Models of Psoriasis. , 2019, The Journal of investigative dermatology.

[8]  J. Walter,et al.  Sodium chloride is an ionic checkpoint for human TH2 cells and shapes the atopic skin microenvironment , 2019, Science Translational Medicine.

[9]  Hyoju Yi,et al.  Sodium Chloride Aggravates Arthritis via Th17 Polarization , 2018, Yonsei medical journal.

[10]  F. Paul,et al.  Metabolic, Mental and Immunological Effects of Normoxic and Hypoxic Training in Multiple Sclerosis Patients: A Pilot Study , 2018, Front. Immunol..

[11]  M. Schön,et al.  The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis , 2018, Front. Immunol..

[12]  M. Uder,et al.  Elevated tissue sodium deposition in patients with type 2 diabetes on hemodialysis detected by 23Na magnetic resonance imaging. , 2018, Kidney international.

[13]  K. Reich,et al.  S3 Guideline for the treatment of psoriasis vulgaris, update – Short version part 1 – Systemic treatment , 2018, Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG.

[14]  P. Saas,et al.  Could Sodium Chloride be an Environmental Trigger for Immune-Mediated Diseases? An Overview of the Experimental and Clinical Evidence , 2018, Front. Physiol..

[15]  D. C. Cara,et al.  High-Salt Diet Induces IL-17-Dependent Gut Inflammation and Exacerbates Colitis in Mice , 2018, Front. Immunol..

[16]  Stefan F Martin,et al.  Pathomechanisms of Contact Sensitization , 2017, Current Allergy and Asthma Reports.

[17]  Sean M. Kearney,et al.  Salt-responsive gut commensal modulates TH17 axis and disease , 2017, Nature.

[18]  F. Kurschus,et al.  IL-17 for therapy. , 2017, Journal of dermatological science.

[19]  S. McColl,et al.  IL-17-producing γδ T cells switch migratory patterns between resting and activated states , 2017, Nature Communications.

[20]  M. Uder,et al.  Skin Sodium Concentration Correlates with Left Ventricular Hypertrophy in CKD. , 2017, Journal of the American Society of Nephrology : JASN.

[21]  M. Rauh,et al.  High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation , 2017, The Journal of clinical investigation.

[22]  M. Uder,et al.  Na+ deposition in the fibrotic skin of systemic sclerosis patients detected by 23Na‐magnetic resonance imaging , 2017, Rheumatology.

[23]  J. Gudjonsson,et al.  The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal. , 2017, The Journal of investigative dermatology.

[24]  A. Waisman,et al.  Gradual development of psoriatic skin lesions by constitutive low-level expression of IL-17A. , 2016, Cellular immunology.

[25]  F. Luft,et al.  Elementary immunology: Na+ as a regulator of immunity , 2016, Pediatric Nephrology.

[26]  D. Hafler,et al.  Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. , 2015, The Journal of clinical investigation.

[27]  M. Wright,et al.  High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. , 2015, The Journal of clinical investigation.

[28]  B. Johannes,et al.  Agreement Between 24-Hour Salt Ingestion and Sodium Excretion in a Controlled Environment , 2015, Hypertension.

[29]  L. Hui,et al.  High salt primes a specific activation state of macrophages, M(Na) , 2015, Cell Research.

[30]  Matthias Heinig,et al.  Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. , 2015, Cell metabolism.

[31]  Daniel B. Shin,et al.  Effect of psoriasis severity on hypertension control: a population-based study in the United Kingdom. , 2015, JAMA dermatology.

[32]  W. Born,et al.  Dermal γδ T Cells – What Have We Learned? , 2015, Cellular immunology.

[33]  I. Bechmann,et al.  Interleukin 17 Drives Vascular Inflammation, Endothelial Dysfunction, and Arterial Hypertension in Psoriasis-Like Skin Disease , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[34]  Nathan W. Levin,et al.  Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients , 2014, Kidney international.

[35]  I. Bechmann,et al.  IL-6 regulates neutrophil microabscess formation in IL-17A-driven psoriasiform lesions. , 2014, The Journal of investigative dermatology.

[36]  D. Harrison,et al.  Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. , 2013, The Journal of clinical investigation.

[37]  David A. Martin,et al.  The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. , 2013, Trends in immunology.

[38]  N. Yosef,et al.  Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells , 2013, Nature.

[39]  M. Uder,et al.  23Na Magnetic Resonance Imaging-Determined Tissue Sodium in Healthy Subjects and Hypertensive Patients , 2013, Hypertension.

[40]  A. Regev,et al.  Induction of pathogenic Th17 cells by inducible salt sensing kinase SGK1 , 2013, Nature.

[41]  H. Luhmann,et al.  An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. , 2013, The Journal of investigative dermatology.

[42]  Jun Yan,et al.  New insights of T cells in the pathogenesis of psoriasis , 2012, Cellular and Molecular Immunology.

[43]  A. Waisman To be 17 again--anti-interleukin-17 treatment for psoriasis. , 2012, The New England journal of medicine.

[44]  M. Uder,et al.  23Na Magnetic Resonance Imaging of Tissue Sodium , 2012, Hypertension.

[45]  R. Trembath,et al.  Psoriasis and other complex trait dermatoses: from loci to functional pathways , 2011, The Journal of investigative dermatology.

[46]  V. Jala,et al.  Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. , 2011, Immunity.

[47]  E. Wagner,et al.  Psoriasis: what we have learned from mouse models , 2010, Nature Reviews Rheumatology.

[48]  A. Blauvelt,et al.  Circulating Th17, Th22, and Th1 cells are increased in psoriasis. , 2010, The Journal of investigative dermatology.

[49]  Andrea B Troxel,et al.  Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the General Practice Research Database. , 2010, European heart journal.

[50]  F. Luft,et al.  Mononuclear Phagocyte System Depletion Blocks Interstitial Tonicity-Responsive Enhancer Binding Protein/Vascular Endothelial Growth Factor C Expression and Induces Salt-Sensitive Hypertension in Rats , 2010, Hypertension.

[51]  K. Mills,et al.  Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. , 2009, Immunity.

[52]  L. Boon,et al.  Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis1 , 2009, The Journal of Immunology.

[53]  K. Alitalo,et al.  Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism , 2009, Nature Medicine.

[54]  J. Arbiser,et al.  The role of angiogenesis in the pathogenesis of psoriasis , 2009, Autoimmunity.

[55]  A. Blauvelt T-helper 17 cells in psoriatic plaques and additional genetic links between IL-23 and psoriasis. , 2008, The Journal of investigative dermatology.

[56]  Daniel B. Shin,et al.  Prevalence of cardiovascular risk factors in patients with psoriasis. , 2006, Journal of the American Academy of Dermatology.

[57]  B. Nickoloff,et al.  Characterization of lymphocyte-dependent angiogenesis using a SCID mouse: human skin model of psoriasis. , 2000, The journal of investigative dermatology. Symposium proceedings.

[58]  R. Marks,et al.  Quantification of microvascular changes in the skin in patients with psoriasis , 1992, The British journal of dermatology.

[59]  M. Lindberg,et al.  X-ray microanalysis of psoriatic skin. , 1985, The Journal of investigative dermatology.

[60]  G. Szabó,et al.  Electrolyte concentrations in subcutaneous tissue fluid and lymph. , 1982, Lymphology.