Passively modelocked electrically pumped VECSELs

In modelocked electrically pumped VECSELs (EP-VECSELs) the gain saturation strongly influences the pulse formation. Here we present a detailed gain characterization of EP-VECSELs as published the first time in [1]. The spectral gain-distribution and the gain saturation behavior of two devices with different field-enhancement in the quantum-well gain layers are investigated. Comparing spectral bandwidth, small-signal gain and saturation fluence of the three devices, we chose the most suitable for modelocking experiments. Using a low-saturation fluence SESAM we have generated 9.5-ps-pulses with an average output-power of 7.6 mW at 1.4 GHz repetition-rate, which have been the shortest pulses from an EP-VECSEL to date [1].

[1]  John G. McInerney,et al.  Novel 980-nm and 490-nm light sources using vertical-cavity lasers with extended coupled cavities , 2003, SPIE OPTO.

[2]  Voltage drop in n- and p-type Bragg reflectors for vertical-cavity surface-emitting lasers , 1995, IEEE Photonics Technology Letters.

[3]  R. Michalzik,et al.  Electrically pumped frequency-doubled surface emitting lasers operating at 485 nm emission wavelength , 2008 .

[4]  F. Krausz,et al.  Kerr lens mode locking. , 1992, Optics letters.

[5]  H. Lin,et al.  Compositional grading in distributed Bragg reflectors, using discrete alloys, in vertical-cavity surface-emitting lasers , 2005 .

[6]  G. Margaritondo,et al.  Empirical Rule to Predict Heterojunction Band Discontinuities , 1983 .

[7]  M. Golling,et al.  Vertical integration of ultrafast semiconductor lasers , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[8]  Freeman,et al.  Interface phenomena at semiconductor heterojunctions: Local-density valence-band offset in GaAs/AlAs. , 1987, Physical review. B, Condensed matter.

[9]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[10]  Mark R. Pinto,et al.  Elimination of heterojunction band discontinuities by modulation doping , 1992 .

[11]  U. Keller,et al.  High precision optical characterization of semiconductor saturable absorber mirrors (SESAMs) , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[13]  Elsa Reichmanis,et al.  LITHOGRAPHIC RESIST MATERIALS CHEMISTRY , 1993 .

[14]  Matthias Golling,et al.  Current confinement in EP-VECSELs for high power single-mode operation suitable for passive mode-locking , 2012, Photonics Europe.

[15]  M. DiDomenico,et al.  Small‐Signal Analysis of Internal (Coupling‐Type) Modulation of Lasers , 1964 .

[16]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[17]  U. Keller,et al.  2.1-W picosecond passively mode-locked external-cavity semiconductor laser. , 2005, Optics letters.

[18]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[19]  Chung-En Zah,et al.  Design and implementation of metallization structures for epi-down bonded high power semiconductor lasers , 2004, 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No.04CH37546).

[20]  Olivier Vendier,et al.  Novel packaging solutions for GaN power electronics: Silver-diamond composite packages , 2010 .

[21]  Katsuhito Yoshida,et al.  Thermal properties of diamond/copper composite material , 2004, Microelectron. Reliab..

[22]  Gordon A. Keeler,et al.  Electrically pumped 850-nm micromirror VECSELs , 2005, SPIE OPTO.

[23]  R. E. Hayes,et al.  Optoelectronic device simulation of Bragg reflectors and their influence on surface-emitting laser characteristics , 1998 .

[25]  U. Keller,et al.  On the design of electrically pumped vertical-external-cavity surface-emitting lasers , 2008 .

[26]  K. H. Ploog,et al.  Thermal conductivity of GaAs/AlAs superlattices , 1999 .

[27]  Stephan W Koch,et al.  Passively modelocked VECSEL emitting 682 fs pulses with 5.1W of average output power , 2012 .

[28]  I. Krestnikov,et al.  VECSEL gain characterization. , 2012, Optics express.

[29]  K. Lau,et al.  High single-transverse-mode output from external-cavity surface-emitting laser diodes , 1993 .

[30]  Aram Mooradian,et al.  High-power surface emitting semiconductor laser with extended vertical compound cavity , 2003 .

[31]  K. Killeen,et al.  Low resistance wavelength-reproducible p-type (Al,Ga)As distributed Bragg reflectors grown by molecular beam epitaxy , 1993 .

[32]  E. Ippen,et al.  Passively modelocked vertical extended cavity surface emitting diode laser , 2003 .

[33]  U. Keller,et al.  High-power passively mode-locked semiconductor lasers , 2002 .

[34]  P. Kreuter Modeling of electrically pumped vertical-external-cavity surface-emitting lasers , 2010 .

[35]  M. Hoffmann,et al.  Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. , 2008, Optics letters.

[36]  Ursula Keller,et al.  Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight , 2010 .

[37]  F. McClung,et al.  Giant Optical Pulsations from Ruby , 1962 .

[38]  Federico Pirzio,et al.  40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode. , 2012, Optics express.

[39]  M. Golling,et al.  First experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[40]  Ursula Keller,et al.  Soliton mode-locking with saturable absorbers , 1996 .

[41]  Bernd Witzigmann,et al.  Physics and Simulation of Vertical-Cavity Surface-Emitting Lasers , 2008 .

[42]  M. Golling,et al.  Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL , 2011, IEEE Photonics Journal.

[43]  K. Weingarten,et al.  Semiconductor saturable absorber mirror structures with low saturation fluence , 2005 .

[44]  E. Ippen,et al.  Picosecond pulse generation from passively modelocked vertical cavity diode laser at up to 15 GHz pulse repetition rate , 2004 .

[45]  U. Keller,et al.  Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers , 2003, CLEO 2003.

[46]  U Keller,et al.  Gain characterization and passive modelocking of electrically pumped VECSELs. , 2012, Optics express.

[47]  J. Piprek,et al.  Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors , 1998, IEEE Photonics Technology Letters.

[48]  J. Singer Advances in quantum electronics , 1961 .

[49]  Amnon Yariv,et al.  Internal Modulation in Multimode Laser Oscillators , 1965 .

[50]  M. Golling,et al.  Electrically Pumped Vertical External Cavity Surface Emitting Lasers Suitable for Passive Modelocking , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[52]  Rüdiger Paschotta,et al.  Q-switching stability limits of continuous-wave passive mode locking , 1999 .

[53]  J. Kwo,et al.  A simple way to reduce series resistance in p-doped semiconductor distributed Bragg reflectors , 1991 .

[54]  J. Cunningham,et al.  Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser. , 1991, Optics letters.

[55]  Rüdiger Paschotta,et al.  Passive mode locking with slow saturable absorbers , 2001 .

[56]  Yu-Chia Chang Engineering vertical -cavity surface -emitting lasers for high-speed operation , 2008 .

[57]  Ian J. Hodgkinson,et al.  Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides , 1984 .

[58]  U. Keller,et al.  Passively mode-locked diode-pumped surface-emitting semiconductor laser , 2000, IEEE Photonics Technology Letters.

[59]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[60]  D. T. Childs,et al.  Tradeoffs in the Realization of Electrically Pumped Vertical External Cavity Surface Emitting Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  Ursula Keller,et al.  Passively modelocked surface-emitting semiconductor lasers , 2006 .

[62]  Matthias Golling,et al.  Experimentally verified pulse formation model for high-power femtosecond VECSELs , 2013 .

[63]  Ursula Keller,et al.  Optical characterization of semiconductor saturable absorbers , 2004 .

[64]  L. Frantz,et al.  Theory of Pulse Propagation in a Laser Amplifier , 1963 .

[65]  M. Kuznetsov,et al.  High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1997, IEEE Photonics Technology Letters.

[66]  Ichiro Ogura,et al.  Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasi‐graded superlattices at the heterointerfaces , 1993 .

[67]  C. V. Shank,et al.  Physics of dye lasers , 1975 .

[68]  M. Golling,et al.  Ultrafast Electrically Pumped VECSELs , 2013, IEEE Photonics Journal.

[69]  Jorg Hader,et al.  106 W continuous-wave output power from vertical-external-cavity surface-emitting laser , 2012 .

[70]  L Gallmann,et al.  Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. , 1999, Optics letters.

[71]  G. R. Hadley,et al.  High single mode operation from hybrid ion implanted/selectively oxidized VCSELs , 2000, Conference Digest. 2000 IEEE 17th International Semiconductor Laser Conference. (Cat. No.00CH37092).

[72]  Shin Arahira,et al.  Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes , 1996 .

[73]  Brian Thibeault,et al.  Band‐gap engineered digital alloy interfaces for lower resistance vertical‐cavity surface‐emitting lasers , 1993 .