Integrated electrospun carbon nanofibers with vanadium and single-walled carbon nanotubes through covalent bonds for high-performance supercapacitors

We report a ternary composite vanadium/single-walled carbon nanotubes (SWCNTs)/carbon nanofibers (VSCNFs) material using hybrid-electrospinning and carbonizing of polyacrylonitrile, polyvinylpyrrolidone, SWCNTs and vanadyl acetylacetonate. The morphology and structure of the ternary composites are characterized. Its electrochemical properties are measured in a 6 mol L−1 aqueous KOH electrolyte. VSCNFs possesses a hierarchical structure with micropores and mesopores and a specific surface area of 821 m2 g−1, and it also exhibits a reversible specific capacitance of 479 F g−1 at 1 A g−1 and 367.4 F g−1 at 10 A g−1, and retains 94% of its initial capacitance after 5000 cycles (8 A g−1). The results show that simultaneously adding vanadium and SWCNTs can greatly enhance the conductivity, capacitive performance and stability by forming a closer connection with nanofibers through V–N–C, V–O–C and VO bonds. SWNCTs are not only mechanically mixed in CNFs to enhance the extent of graphitization, but also involved in the transmutation process of CNFs graphitization with the participation of vanadium.

[1]  D. Isa,et al.  A review of metal oxide composite electrode materials for electrochemical capacitors , 2014 .

[2]  O. Schmidt,et al.  Multilayer super-short carbon nanotube/reduced graphene oxide architecture for enhanced supercapacitor properties , 2014 .

[3]  Zongping Shao,et al.  Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. , 2013, Nanoscale.

[4]  V. Pavlínek,et al.  Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes , 2013 .

[5]  W. Li,et al.  Coupled soft-template/hydrothermal process synthesis of mesoporous carbon spheres from liquefied larch sawdust , 2013 .

[6]  Hazlie Mokhlis,et al.  Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review , 2013 .

[7]  Li Jiang,et al.  Supercapacitors: Review of Materials and Fabrication Methods , 2013 .

[8]  T. A. Hatton,et al.  A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage , 2013 .

[9]  Guofeng Ren,et al.  Highly conductive VO2 treated with hydrogen for supercapacitors. , 2013, Chemical communications.

[10]  Wei Xing,et al.  Nanostructured morphology control for efficient supercapacitor electrodes , 2013 .

[11]  D. J. Yang,et al.  Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes , 2012 .

[12]  Ayyakkannu Manivannan,et al.  Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects , 2012 .

[13]  B. Chowdari,et al.  Fabrication of High Energy‐Density Hybrid Supercapacitors Using Electrospun V2O5 Nanofibers with a Self‐Supported Carbon Nanotube Network , 2012 .

[14]  Xianjun Zhu,et al.  Reduced graphene oxide–nickel oxide composite as high performance electrode materials for supercapacitors , 2012 .

[15]  P. Kossyrev,et al.  Carbon black supercapacitors employing thin electrodes , 2012 .

[16]  Aiping Yu,et al.  Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene , 2011 .

[17]  Xiaobo Ji,et al.  Electrochemical capacitors utilising transition metal oxides: an update of recent developments , 2011 .

[18]  Meihua Jin,et al.  High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self‐Standing Carbon‐Nanofiber Paper , 2011 .

[19]  Xungai Wang,et al.  Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials , 2011 .

[20]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[21]  M. Dresselhaus,et al.  Defect characterization in graphene and carbon nanotubes using Raman spectroscopy , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Suraya Abdul Rashid,et al.  Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review , 2010 .

[23]  Yichun Liu,et al.  Polyacrylonitrile and Carbon Nanofibers with Controllable Nanoporous Structures by Electrospinning , 2009 .

[24]  N. Tucker,et al.  Effect of salts on the electrospinning of poly(vinyl alcohol) , 2009 .

[25]  N. Xia,et al.  Worm-like mesoporous carbon synthesized from metal―organic coordination polymers for supercapacitors , 2009 .

[26]  Young-Seak Lee,et al.  Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst. , 2008, Journal of colloid and interface science.

[27]  V. Obreja,et al.  On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review , 2008 .

[28]  Chengguo Wang,et al.  Effect of oxygen uptake and aromatization on the skin–core morphology during the oxidative stabilization of polyacrylonitrile fibers , 2008 .

[29]  Liquan Chen,et al.  Research progress of vanadium redox flow battery for energy storage in China , 2008 .

[30]  L. Jie,et al.  Structural changes during the thermal stabilization of modified and original polyacrylonitrile precursors , 2005 .

[31]  Gary E. Wnek,et al.  Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit , 2005 .

[32]  Chan Kim,et al.  Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors , 2005 .

[33]  E. Frąckowiak,et al.  Effect of nitrogen in carbon electrode on the supercapacitor performance , 2005 .

[34]  Stephen Z. D. Cheng,et al.  Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes , 2005 .

[35]  Mauricio Terrones,et al.  Applications of carbon nanotubes in the twenty–first century , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  K. Lii,et al.  Vibrational Spectra of the Layered Compound [(VO2)2(4,4-bipy)0.5(4,4′- Hbipy)(PO4)]·H2O , 2003 .

[37]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[38]  M. Brenner,et al.  Experimental characterization of electrospinning: the electrically forced jet and instabilities , 2001 .

[39]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[40]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[41]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[42]  Bruce Dunn,et al.  Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes , 1997 .

[43]  J. Fricke,et al.  Carbon Aerogels as Electrode Material in Supercapacitors , 1997 .

[44]  M. Antonik,et al.  Clean Surface and Oxidation Behavior of Vanadium Carbide, VC0.75(100) , 1996 .

[45]  E. G. Ferrer,et al.  Infrared, Raman and pre‐resonance Raman spectra of vanadyl(IV) tetraphenylporphyrin , 1992 .

[46]  E. G. Ferrer,et al.  Electronic and photoelectron spectra of vanadyl(IV) tetraphenylporphyrin , 1991 .

[47]  C. Batich,et al.  X-Ray photoelectron spectroscopy of nitroso compounds: relative ionicity of the closed and open forms , 1984 .

[48]  D. Matthews,et al.  Molecular spectroscopy by ESCA. Bonding and valence electron distribution in molecules. Experimental binding energies and charge distributions in tetracyanoethylene, tetracyanoethylene oxide, tetracyanocycylpropane, cyclopropane, ethylene oxide, and related molecules , 1972 .

[49]  Huanwen Wang,et al.  One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors , 2014 .

[50]  Pooi See Lee,et al.  3D carbon based nanostructures for advanced supercapacitors , 2013 .

[51]  W. Marsden I and J , 2012 .

[52]  I. Miyazaki,et al.  AND T , 2022 .