Modelling and shape optimization of an actuator

The aim of this work is to optimize an actuator design so that the flow profile at its exit section is as close as possible to a target profile. The method is founded on the penalization and level-set methods to solve direct and inverse problems on Cartesian meshes The optimization process is written and applied both for Stokes and Navier-Stokes flows. The results show that the method can be successfully applied to the non linear problem to improve the flow profile of an actuator even if the target cannot be totally reached.

[1]  I. Mortazavi,et al.  The penalization method , 2001 .

[2]  S. Amstutz THE TOPOLOGICAL ASYMPTOTIC FOR THE NAVIER-STOKES EQUATIONS , 2005 .

[3]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[4]  Ph. Guillaume,et al.  Topological Sensitivity and Shape Optimization for the Stokes Equations , 2004, SIAM J. Control. Optim..

[5]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[6]  Charles-Henri Bruneau,et al.  Level-set, penalization and cartesian meshes: A paradigm for inverse problems and optimal design , 2009, J. Comput. Phys..

[7]  Grégoire Allaire,et al.  Coupling the Level Set Method and the Topological Gradient in Structural Optimization , 2006 .

[8]  Ian A. Ashcroft,et al.  Multi-physics optimisation of ‘brass’ instruments—a new method to include structural and acoustical interactions , 2009 .

[9]  J. Cea Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût , 1986 .

[10]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[11]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[12]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[13]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[14]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[16]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[17]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.

[18]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[19]  Qing Li,et al.  A variational level set method for the topology optimization of steady-state Navier-Stokes flow , 2008, J. Comput. Phys..

[20]  Ole Sigmund,et al.  IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials , 2006 .

[21]  M. Gad-el-Hak The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture , 1999 .

[22]  Xianbao Duan,et al.  Optimal shape control of fluid flow using variational level set method , 2008 .

[23]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[24]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[25]  Iraj Mortazavi,et al.  Numerical modelling and passive flow control using porous media , 2008 .