MoS2 as a long-life host material for potassium ion intercalation

[1]  Xiulei Ji,et al.  Polynanocrystalline Graphite: A New Carbon Anode with Superior Cycling Performance for K-Ion Batteries. , 2017, ACS applied materials & interfaces.

[2]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[3]  Xiaodi Ren,et al.  Probing Mechanisms for Inverse Correlation between Rate Performance and Capacity in K-O2 Batteries. , 2017, ACS applied materials & interfaces.

[4]  Chunsheng Wang,et al.  Electrochemical Intercalation of Potassium into Graphite , 2016 .

[5]  Keith Share,et al.  Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons , 2016 .

[6]  Jin Han,et al.  Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. , 2016, Chemical communications.

[7]  Shuai Zhang,et al.  Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties. , 2016, ACS applied materials & interfaces.

[8]  S. Dou,et al.  MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries , 2016 .

[9]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[10]  I. Grigorieva,et al.  Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2. , 2015, Nano letters.

[11]  N. Munichandraiah,et al.  K2Ti4O9: A Promising Anode Material for Potassium Ion Batteries , 2016 .

[12]  Xiaodi Ren,et al.  Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. , 2015, ACS applied materials & interfaces.

[13]  Donald J. Siegel,et al.  Identifying the Discharge Product and Reaction Pathway for a Secondary Mg/O2 Battery , 2015 .

[14]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[15]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[16]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[17]  Yan Yao,et al.  Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites , 2015 .

[18]  Young Jin Kim,et al.  High-capacity anode materials for sodium-ion batteries. , 2014, Chemistry.

[19]  Liquan Chen,et al.  Atomic-scale clarification of structural transition of MoS₂ upon sodium intercalation. , 2014, ACS nano.

[20]  Rana Mohtadi,et al.  Magnesium batteries: Current state of the art, issues and future perspectives , 2014, Beilstein journal of nanotechnology.

[21]  Kai Zhang,et al.  Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. , 2014, Inorganic chemistry.

[22]  Martin Pumera,et al.  Layered transition metal dichalcogenides for electrochemical energy generation and storage , 2014 .

[23]  Xuedong Bai,et al.  Atomic mechanism of dynamic electrochemical lithiation processes of MoS₂ nanosheets. , 2014, Journal of the American Chemical Society.

[24]  Sally M. Benson,et al.  Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage , 2014 .

[25]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[26]  Brian C. Olsen,et al.  Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites , 2014 .

[27]  Seung M. Oh,et al.  High-capacity anode materials for sodium-ion batteries. , 2014, Chemistry.

[28]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[29]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[30]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[31]  Yong‐Sheng Hu,et al.  Lithium storage in commercial MoS2 in different potential ranges , 2012 .

[32]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[33]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[34]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[35]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[36]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[37]  R. Katiyar,et al.  Structural and Electrochemical Characterization of Pure and Nanocomposite C- Cathodes for Lithium Ion Rechargeable Batteries , 2010 .

[38]  Shin Fujitani,et al.  Study of LiFePO4 by Cyclic Voltammetry , 2007 .

[39]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[40]  E. Wachtel,et al.  Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties. , 2002, Journal of the American Chemical Society.

[41]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[42]  G. González,et al.  Temperature effects on the diffusion of lithium in MoS2 , 1995 .

[43]  R. Somoano,et al.  Alkali metal intercalates of molybdenum disulfide. , 1973 .

[44]  G. Pistoia Nonaqueous Batteries with LiClO4‐Ethylene Carbonate as Electrolyte , 1971 .