Differential phase shift quantum private comparison

A novel quantum private comparison protocol based on a differential phase shift scheme is presented in this paper. In our protocol, two distrustful participants can compare the equality of information with the help of a semi-honest third party. Taking advantages of differential phase shift scheme, this protocol employs weak coherent pulses instead of single photons and can be implemented without expensive and impractical quantum devices, such as entangled photon source and quantum memory. Therefore, it is simpler and more flexible than previous protocols. Moreover, in principle, nearly 100 % qubit efficiency can be achieved because all photon counts obtained by TP contribute to the comparison. The correctness and security of the protocol are also discussed.

[1]  Fei Gao,et al.  Efficient quantum private comparison employing single photons and collective detection , 2013, Quantum Inf. Process..

[2]  Jiao Rong-Zhen,et al.  Performance of Differential-Phase-Shift Keying Protocol Applying 1310 nm Up-Conversion Single-Photon Detector , 2008 .

[3]  Marcos Curty,et al.  Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks , 2008, 0803.1473.

[4]  Qiao-Yan Wen,et al.  Secure quantum private comparison , 2009 .

[5]  Navroz Patel Quantum games: States of play , 2007, Nature.

[6]  V. Buzek,et al.  Towards quantum-based privacy and voting , 2005, quant-ph/0505041.

[7]  Ying Sun,et al.  Information leak in Liu et al.’s quantum private comparison and a new protocol , 2012, The European Physical Journal D.

[8]  刘文,et al.  Quantum Private Comparison Protocol Based on Bell Entangled States , 2012 .

[9]  E. L. Ginzton Security of differential phase shift quantum key distribution against individual attacks , 2005 .

[10]  Kyo Inoue,et al.  Differential-phase-shift quantum key distribution with segmented pulse trains , 2011 .

[11]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[12]  Wei-Wei Zhang,et al.  Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party , 2013, Quantum Inf. Process..

[13]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[14]  E. W. Piotrowski,et al.  Quantum Auctions: Facts and Myths ⋆ , 2007, 0709.4096.

[15]  Wen Liu,et al.  New Quantum Private Comparison Protocol Using χ-Type State , 2012 .

[16]  Zhengjun Wei,et al.  A free-space-based differential phase shift quantum key distribution scheme with higher key creation efficiency , 2009 .

[17]  K. Tamaki,et al.  Differential phase shift-quantum key distribution , 2008, IEEE Communications Magazine.

[18]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[19]  Wen Liu,et al.  An efficient protocol for the quantum private comparison of equality with W state , 2011 .

[20]  Wen Liu,et al.  Quantum Private Comparison Based on GHZ Entangled States , 2012 .

[21]  Wen Liu,et al.  A Protocol for the Quantum Private Comparison of Equality with χ-Type State , 2012 .

[22]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[23]  B. Baek,et al.  1310 nm differential-phase-shift QKD system using superconducting single-photon detectors* , 2009 .

[24]  Ying Sun,et al.  Quantum private comparison protocol with d-dimensional Bell states , 2012, Quantum Information Processing.

[25]  Hui Chen,et al.  Flexible quantum private queries based on quantum key distribution. , 2011, Optics express.

[26]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[27]  Jian Li,et al.  Improved eavesdropping detection strategy based on four-particle cluster state in quantum direct communication protocol , 2012 .

[28]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[29]  Xingtong Liu,et al.  Cryptanalysis of the secure quantum private comparison protocol , 2013 .

[30]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[31]  Kyo Inoue,et al.  Differential-phase-shift quantum key distribution with phase modulation to combat sequential attacks , 2011 .

[32]  Hua Zhang,et al.  Comment on quantum private comparison protocols with a semi-honest third party , 2012, Quantum Information Processing.

[33]  K Inoue,et al.  Differential-phase-shift quantum secret sharing. , 2008, Optics express.

[34]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2011, Quantum Information Processing.

[35]  Xiu-Bo Chen,et al.  AN EFFICIENT PROTOCOL FOR THE QUANTUM PRIVATE COMPARISON OF EQUALITY WITH A FOUR-QUBIT CLUSTER STATE , 2012 .

[36]  Anthony Chefles,et al.  Quantum protocols for anonymous voting and surveying , 2005, quant-ph/0504161.

[37]  Qiaoyan Wen,et al.  Quantum Private Comparison Using Genuine Four-Particle Entangled States , 2012 .

[38]  S. Lloyd,et al.  Experimental quantum private queries with linear optics , 2009 .

[39]  Kai Wen,et al.  Unconditional security of single-photon differential phase shift quantum key distribution. , 2008, Physical review letters.

[40]  Wei Cui,et al.  Quantum Private Comparison Protocol Based on Bell Entangled States , 2012 .

[41]  Yuguang Yang,et al.  NEW QUANTUM PRIVATE COMPARISON PROTOCOL WITHOUT ENTANGLEMENT , 2012 .

[42]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[43]  Fei Gao,et al.  Quantum protocol for millionaire problem , 2011 .

[44]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[45]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[46]  Zhiwei Sun,et al.  Quantum Private Comparison Protocol Based on Cluster States , 2013 .

[47]  T Honjo,et al.  High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes. , 2011, Optics express.

[48]  Zheng-Fu Han,et al.  Security proof of differential phase shift quantum key distribution in the noiseless case , 2008, 0806.2000.

[49]  Jian Wang,et al.  Quantum secure direct communication based on order rearrangement of single photons , 2006, quant-ph/0603100.

[50]  Jacques Traoré,et al.  A fair and efficient solution to the socialist millionaires' problem , 2001, Discret. Appl. Math..

[51]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[52]  Seth Lloyd,et al.  Quantum private queries. , 2007, Physical review letters.

[53]  Qiaoyan Wen,et al.  An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement , 2009 .

[54]  Jiao Rong-Zhen,et al.  Analysis of the differential-phase-shift-keying protocol in the quantum-key-distribution system , 2009 .

[55]  Tad Hogg,et al.  Quantum Auctions , 2007, 0704.0800.

[56]  Chia-Wei Tsai,et al.  Multi-user private comparison protocol using GHZ class states , 2013, Quantum Inf. Process..

[57]  Marcos Curty,et al.  Upper bounds on the performance of differential-phase-shift quantum key distribution , 2008, Quantum Inf. Comput..

[58]  T. Noh Counterfactual quantum cryptography. , 2008, Physical review letters.