Transcriptional Dysregulation of Adipose Tissue Autophagy in Obesity.

There is growing interest in understanding how dysregulated autophagy may contribute to pathogenesis of disease. Most frequently, disease states are associated with diminished autophagy, mostly attributed to genetic variation in autophagy genes and/or to dysfunctional posttranscriptional mechanisms. In human adipose tissue (AT), in obesity, expression of autophagy genes is upregulated and autophagy is likely activated, associating with adipose dysfunction. This review explores the emerging role of transcriptional mechanisms regulating AT autophagy in obesity.

[1]  I. Harman-boehm,et al.  Decreased adiponectin links elevated adipose tissue autophagy with adipocyte endocrine dysfunction in obesity , 2016, International Journal of Obesity.

[2]  I. Harman-boehm,et al.  Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1 , 2015, Autophagy.

[3]  M. Stumvoll,et al.  Autophagy in adipose tissue of patients with obesity and type 2 diabetes , 2015, Molecular and Cellular Endocrinology.

[4]  K. Clément,et al.  DAPK2 Downregulation Associates With Attenuated Adipocyte Autophagic Clearance in Human Obesity , 2015, Diabetes.

[5]  D. Klionsky,et al.  How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. , 2015, Trends in cell biology.

[6]  D. Hess,et al.  Forkhead Box O-1 Modulation Improves Endothelial Insulin Resistance in Human Obesity , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[7]  M. J. Kim,et al.  Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis , 2015, PloS one.

[8]  J. Lippincott-Schwartz,et al.  Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. , 2015, Developmental cell.

[9]  L. Pirola,et al.  Adipose Tissue–Derived Stem Cells From Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation , 2015, Diabetes.

[10]  M. Czaja,et al.  Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization , 2015, Autophagy.

[11]  M. Lazar,et al.  Nutrient Sensing Nuclear Receptors Coordinate Autophagy , 2014, Nature.

[12]  G. Yoon,et al.  Transcriptional regulation of autophagy by an FXR/CREB axis , 2014, Nature.

[13]  Myung-Shik Lee,et al.  Autophagy—a key player in cellular and body metabolism , 2014, Nature Reviews Endocrinology.

[14]  D. Graves,et al.  FOXO Transcription Factors: Their Clinical Significance and Regulation , 2014, BioMed research international.

[15]  G. Sobue,et al.  Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. , 2014, Human molecular genetics.

[16]  B. Joseph,et al.  The return of the nucleus: transcriptional and epigenetic control of autophagy , 2013, Nature Reviews Molecular Cell Biology.

[17]  M. Serlie,et al.  Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. , 2013, Cell metabolism.

[18]  A. Rudich,et al.  A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue. , 2013, American journal of physiology. Endocrinology and metabolism.

[19]  W. Tian,et al.  E2F1 in renal cancer: Mr Hyde disguised as Dr Jekyll? , 2013, The Journal of pathology.

[20]  A. Tee,et al.  The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. , 2013, Biochemical Society transactions.

[21]  L. Attardi,et al.  TRP53 activates a global autophagy program to promote tumor suppression , 2013, Autophagy.

[22]  A. Riggs,et al.  Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance , 2013, Proceedings of the National Academy of Sciences.

[23]  M. Napoli,et al.  The family that eats together stays together: new p53 family transcriptional targets in autophagy. , 2013, Genes & development.

[24]  A. Sidow,et al.  Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. , 2013, Genes & development.

[25]  A. Ballabio,et al.  TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop , 2013, Nature Cell Biology.

[26]  A. Kamat,et al.  ZKSCAN3 is a master transcriptional repressor of autophagy. , 2013, Molecular cell.

[27]  L. Velloso,et al.  Defective regulation of adipose tissue autophagy in obesity , 2013, International Journal of Obesity.

[28]  S. Ryter,et al.  Autophagy in human health and disease. , 2013, The New England journal of medicine.

[29]  B. Pützer,et al.  E2F1 apoptosis counterattacked: evil strikes back. , 2013, Trends in molecular medicine.

[30]  L. Galluzzi,et al.  Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. , 2012, Molecular cell.

[31]  L. Joosten,et al.  Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. , 2012, Endocrinology.

[32]  I. Harman-boehm,et al.  Autophagy in Adipose Tissue , 2012, Obesity Facts.

[33]  R. DePinho,et al.  The Autophagy-related Gene 14 (Atg14) Is Regulated by Forkhead Box O Transcription Factors and Circadian Rhythms and Plays a Critical Role in Hepatic Autophagy and Lipid Metabolism* , 2012, The Journal of Biological Chemistry.

[34]  Yuxin Yin,et al.  FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway , 2012, Autophagy.

[35]  Yong Chen,et al.  MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB , 2012, Autophagy.

[36]  P. Tontonoz,et al.  Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR , 2012, Nature Reviews Molecular Cell Biology.

[37]  D. Gašperíková,et al.  Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. , 2012, Genes & development.

[38]  K. Morino,et al.  Autophagy regulates inflammation in adipocytes. , 2012, Biochemical and biophysical research communications.

[39]  Andrea Ballabio,et al.  TFEB regulates autophagy: An integrated coordination of cellular degradation and recycling processes , 2011, Autophagy.

[40]  A. Ballabio,et al.  Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. , 2011, Human molecular genetics.

[41]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[42]  Y. Marcel,et al.  Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. , 2011, Cell metabolism.

[43]  I. Harman-boehm,et al.  Altered autophagy in human adipose tissues in obesity. , 2010, The Journal of clinical endocrinology and metabolism.

[44]  Wei-Guo Zhu,et al.  Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity , 2010, Nature Cell Biology.

[45]  P. Strålfors,et al.  Attenuated mTOR Signaling and Enhanced Autophagy in Adipocytes from Obese Patients with Type 2 Diabetes , 2010, Molecular medicine.

[46]  H. Tanak,et al.  Density functional computational studies on (E)-2-[(2-Hydroxy-5-nitrophenyl)-iminiomethyl]-4-nitrophenolate , 2010, Journal of molecular modeling.

[47]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[48]  Shengkan Jin,et al.  Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice , 2009, Autophagy.

[49]  M. Czaja,et al.  Autophagy regulates adipose mass and differentiation in mice. , 2009, The Journal of clinical investigation.

[50]  Shih-Yin Tsai,et al.  Emerging roles of E2Fs in cancer: an exit from cell cycle control , 2009, Nature Reviews Cancer.

[51]  Hui-yu Liu,et al.  Hepatic Autophagy Is Suppressed in the Presence of Insulin Resistance and Hyperinsulinemia , 2009, The Journal of Biological Chemistry.

[52]  Arunima Sengupta,et al.  FoxO Transcription Factors Promote Autophagy in Cardiomyocytes* , 2009, The Journal of Biological Chemistry.

[53]  C. Fernandes‐Santos,et al.  Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet. , 2009, Nutrition.

[54]  Keiji Tanaka,et al.  The MAP1-LC3 conjugation system is involved in lipid droplet formation. , 2009, Biochemical and biophysical research communications.

[55]  D. Green,et al.  Cytoplasmic functions of the tumour suppressor p53 , 2009, Nature.

[56]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[57]  M. Donowitz,et al.  Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice. , 2009, The Journal of clinical investigation.

[58]  A. Fukamizu,et al.  Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes. , 2009, Biochemical and biophysical research communications.

[59]  L. Kirshenbaum,et al.  Antagonism of E2F-1 regulated Bnip3 transcription by NF-κB is essential for basal cell survival , 2008, Proceedings of the National Academy of Sciences.

[60]  Janet S. Lee,et al.  Egr-1 Regulates Autophagy in Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease , 2008, PloS one.

[61]  D. Ginsberg,et al.  E2F1 regulates autophagy and the transcription of autophagy genes , 2008, Oncogene.

[62]  Nektarios Tavernarakis,et al.  Regulation of autophagy by cytoplasmic p53 , 2008, Nature Cell Biology.

[63]  M. Birnbaum,et al.  The role of FoxO in the regulation of metabolism , 2008, Oncogene.

[64]  C. Mammucari,et al.  Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle , 2008, Autophagy.

[65]  H. Kiyonari,et al.  Forkhead Transcription Factor FoxO1 in Adipose Tissue Regulates Energy Storage and Expenditure , 2008, Diabetes.

[66]  L. Kirshenbaum,et al.  The Cell Cycle Factor E2F-1 Activates Bnip3 and the Intrinsic Death Pathway in Ventricular Myocytes , 2008, Circulation research.

[67]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[68]  K. Vousden,et al.  p53: new roles in metabolism. , 2007, Trends in cell biology.

[69]  O. Kotoulas,et al.  Glycogen autophagy in glucose homeostasis. , 2006, Pathology, research and practice.

[70]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[71]  Kevin M. Ryan,et al.  DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis , 2006, Cell.

[72]  D. Green,et al.  p53 and Metabolism: Inside the TIGAR , 2006, Cell.

[73]  M. Montminy,et al.  The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism , 2005, Nature.

[74]  S. Shoelson,et al.  Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance , 2003, International Journal of Obesity.

[75]  D. Accili,et al.  Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1 , 2002, Nature Genetics.

[76]  Michael Karin,et al.  Reversal of Obesity- and Diet-Induced Insulin Resistance with Salicylates or Targeted Disruption of Ikkβ , 2001, Science.

[77]  G. Shulman,et al.  Prevention of fat-induced insulin resistance by salicylate. , 2001, The Journal of clinical investigation.

[78]  A. Rudich,et al.  Potential role of autophagy in modulation of lipid metabolism. , 2010, American journal of physiology. Endocrinology and metabolism.