Searching Time Period-Based Longest Frequent Path in Big Trajectory Data

Trajectories contain considerable routing information, and trajectory-based routing gains the attention of researchers recently. This paper argues the problem of searching time period Longest Frequent Path(TPLFP). The TPLFP, as one of the reasonable alternative Most Frequent Path (MFP), is close to MFP enough and maximizes the number of frequent route segments. First, we define TPLFP formally. To acquire accurate path frequencies, we describe the footmark, the footmark graph notations and design the Linear Sketch Footmark Index (LSFI) to speed up extracting proper footmark and constructing related footmark graph. Next, we develop a Best-First search algorithm with four pruning strategies. Next, we give an advanced footmark graph and its building algorithm. The extensive experiments demonstrate the effectiveness and efficiency of our index schemes and algorithms, which can find TPLFP results in expected response time.

[1]  Feifei Li,et al.  Multi-approximate-keyword routing in GIS data , 2011, GIS.

[2]  Matthias Schubert,et al.  Linear path skylines in multicriteria networks , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[3]  Yu Zheng,et al.  Constructing popular routes from uncertain trajectories , 2012, KDD.

[4]  Roland Bader,et al.  Alternative Route Graphs in Road Networks , 2011, TAPAS.

[5]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[6]  Dennis Luxen,et al.  Candidate Sets for Alternative Routes in Road Networks , 2012, SOCS.

[7]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[8]  Dieter Pfoser Indexing the Trajectories of Moving Objects , 2002 .

[9]  Heng Tao Shen,et al.  Discovering popular routes from trajectories , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[10]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[11]  Peter Sanders,et al.  Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks , 2008, WEA.

[12]  Ralf Hartmut Güting,et al.  Indexing the Trajectories of Moving Objects in Networks* , 2004, GeoInformatica.

[13]  Yu Zheng,et al.  Travel time estimation of a path using sparse trajectories , 2014, KDD.

[14]  Muhammad Aamir Cheema,et al.  Diversified Spatial Keyword Search On Road Networks , 2014, EDBT.

[15]  Hans-Peter Kriegel,et al.  Route skyline queries: A multi-preference path planning approach , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[16]  David E. Y. Sarna,et al.  Reach for it , 1995 .

[17]  Haim Kaplan,et al.  Reach for A*: Efficient Point-to-Point Shortest Path Algorithms , 2006, ALENEX.

[18]  Lei Chen,et al.  Finding time period-based most frequent path in big trajectory data , 2013, SIGMOD '13.

[19]  Elias Frentzos,et al.  Indexing Objects Moving on Fixed Networks , 2003, SSTD.

[20]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[21]  Yufei Tao,et al.  MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries , 2001, VLDB.

[22]  Jihong Guan,et al.  KORS: Keyword-aware Optimal Route Search System , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).