A humanoid upper body system for two-handed manipulation

This video presents a humanoid two-arm system developed as a research platform for studying dexterous two-handed manipulation. The system is based on the modular DLR-Lightweight-Robot-III and the DLR-Hand-II. Two arms and hands are combined with a three degrees-of-freedom movable torso and a visual system to form a complete humanoid upper body. The diversity of the system is demonstrated by showing the mechanical design, several control concepts, the application of rapid prototyping and hardware-in-the-loop (HIL) development as well as two-handed manipulation experiments and the integration of path planning capabilities.

[1]  Gerd Hirzinger,et al.  Impedance Behaviors for Two-handed Manipulation: Design and Experiments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  Boris Baginski,et al.  Motion planning for manipulators with many degrees of freedom - the BB-method , 1999, DISKI.

[3]  Gerd Hirzinger,et al.  The 3D-Modeller: A Multi-Purpose Vision Platform , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[4]  Alessandro De Luca,et al.  Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Berthold Bäuml,et al.  Agile Robot Development (aRD): A Pragmatic Approach to Robotic Software , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Ulrich Hillenbrand Consistent parameter clustering: Definition and analysis , 2007, Pattern Recognit. Lett..

[7]  Christoph Borst,et al.  A Humanoid Two-Arm System for Dexterous Manipulation , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[8]  Gerd Hirzinger,et al.  Bridging the Gap between Task Planning and Path Planning , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Klaus Landzettel,et al.  A Universal Task-Level Ground Control and Programming System for Space Robot Applications , 1999 .

[10]  Hong Liu,et al.  DLR-Hand II: next generation of a dextrous robot hand , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Christoph Borst,et al.  Towards Service Robots for the Human Environment: the Robutler , 2004 .

[12]  Alin Albu-Schäffer,et al.  DLR's torque-controlled light weight robot III-are we reaching the technological limits now? , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).