Restoration of DWI Data Using a Rician LMMSE Estimator

This paper introduces and analyzes a linear minimum mean square error (LMMSE) estimator using a Rician noise model and its recursive version (RLMMSE) for the restoration of diffusion weighted images. A method to estimate the noise level based on local estimations of mean or variance is used to automatically parametrize the estimator. The restoration performance is evaluated using quality indexes and compared to alternative estimation schemes. The overall scheme is simple, robust, fast, and improves estimations. Filtering diffusion weighted magnetic resonance imaging (DW-MRI) with the proposed methodology leads to more accurate tensor estimations. Real and synthetic datasets are analyzed.

[1]  J Sijbers,et al.  Estimation of the noise in magnitude MR images. , 1998, Magnetic resonance imaging.

[2]  Carl-Fredrik Westin,et al.  Signal LMMSE Estimation from Multiple Samples in MRI and DT-MRI , 2007, MICCAI.

[3]  J. Sijbers,et al.  Maximum likelihood estimation of signal amplitude and noise variance from MR data , 2004, Magnetic resonance in medicine.

[4]  Jan Sijbers,et al.  Maximum-likelihood estimation of Rician distribution parameters , 1998, IEEE Transactions on Medical Imaging.

[5]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[6]  Carl-Fredrik Westin,et al.  Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A LMMSE Approach , 2008, IEEE Transactions on Image Processing.

[7]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[8]  Wenhui Yang,et al.  Adaptive Magnetic Resonance Image Denoising Using Mixture Model and Wavelet Shrinkage , 2003, DICTA.

[9]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[10]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[11]  P. Basser,et al.  A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. , 2006, Journal of magnetic resonance.

[12]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[13]  Jan Sijbers,et al.  Robust estimation of the noise variance from background MR data , 2006, SPIE Medical Imaging.

[14]  Yunmei Chen,et al.  DT-MRI denoising and neuronal fiber tracking , 2004, Medical Image Anal..

[15]  Roland Bammer,et al.  Diffusion tensor imaging using single‐shot SENSE‐EPI , 2002, Magnetic resonance in medicine.

[16]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[17]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[18]  Thomas L. Marzetta,et al.  EM algorithm for estimating the parameters of a multivariate complex Rician density for polarimetric SAR , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[19]  Norman C. Beaulieu,et al.  An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables , 1990, IEEE Trans. Commun..

[20]  Jan Sijbers,et al.  Estimation of signal and noise from Rician distributed data , 1998 .

[21]  Chang Beom Ahn,et al.  Adaptive template filtering for signal-to-noise ratio enhancement in magnetic resonance imaging , 1999, IEEE Transactions on Medical Imaging.

[22]  Marvin Simon,et al.  Probability Distributions Involving Gaussian Random Variables , 2002 .

[23]  Joseph A. O'Sullivan,et al.  ATR performance of a Rician model for SAR images , 2000, SPIE Defense + Commercial Sensing.

[24]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[25]  Santiago Aja-FernRa,et al.  Image Quality Assessment based on Local Variance , 2006 .

[26]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[27]  M. Smith,et al.  An unbiased signal-to-noise ratio measure for magnetic resonance images. , 1993, Medical physics.

[28]  C. Henriquez,et al.  Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. , 1998, American journal of physiology. Heart and circulatory physiology.

[29]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[30]  R. Kikinis,et al.  A review of diffusion tensor imaging studies in schizophrenia. , 2007, Journal of psychiatric research.

[31]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[32]  C. Westin,et al.  Sequential anisotropic Wiener filtering applied to 3D MRI data. , 2007, Magnetic resonance imaging.

[33]  Aleksandra Pizurica,et al.  A versatile wavelet domain noise filtration technique for medical imaging , 2003, IEEE Transactions on Medical Imaging.

[34]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[35]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[36]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[37]  M. Goyal,et al.  State-of-the-art imaging of acute stroke. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[38]  D. M. Drumheller General expressions for Rician density and distribution functions , 1993 .

[39]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..