CCL-DTI: contributing the contrastive loss in drug–target interaction prediction

[1]  Parvin Razzaghi,et al.  DeepCompoundNet: enhancing compound-protein interaction prediction with multimodal convolutional neural networks. , 2023, Journal of biomolecular structure & dynamics.

[2]  S. Gharaghani,et al.  TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function , 2023, Expert Syst. Appl..

[3]  Minzhu Xie,et al.  Graph regularized non-negative matrix factorization with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2,1}$$\end , 2023, BMC Bioinformatics.

[4]  Li Zhang,et al.  GPCNDTA: Prediction of drug-target binding affinity through cross-attention networks augmented with graph features and pharmacophores , 2023, Comput. Biol. Medicine.

[5]  Q. Zhang,et al.  MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug–target interaction , 2023, BMC Bioinformatics.

[6]  Runze Ma,et al.  Cross-view contrastive representation learning approach to predicting DTIs via integrating multi-source information. , 2023, Methods.

[7]  Xiaoqiong Xia,et al.  MDTips: a multimodal-data-based drug–target interaction prediction system fusing knowledge, gene expression profile, and structural data , 2023, Bioinformatics.

[8]  Hongmin Cai,et al.  A survey of drug-target interaction and affinity prediction methods via graph neural networks , 2023, Comput. Biol. Medicine.

[9]  Zhonglu Ren,et al.  SSELM-neg: spherical search-based extreme learning machine for drug–target interaction prediction , 2023, BMC Bioinformatics.

[10]  Zhenjiang Zhao,et al.  MOVE: Integrating Multi-source Information for Predicting DTI via Cross-view Contrastive Learning , 2022, 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[11]  Xing Chen,et al.  Predicting drug-target binding affinity through molecule representation block based on multi-head attention and skip connection , 2022, Briefings Bioinform..

[12]  Craig J. Neal,et al.  AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification , 2022, Briefings Bioinform..

[13]  J. Guan,et al.  Effective drug–target interaction prediction with mutual interaction neural network , 2022, Bioinform..

[14]  Ozlem O. Garibay,et al.  UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning , 2022, Molecules.

[15]  Guohua Wang,et al.  Supervised graph co-contrastive learning for drug-target interaction prediction , 2022, Bioinform..

[16]  Bo Jin,et al.  DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug-Target interaction prediction , 2022, Comput. Biol. Medicine.

[17]  Mansoor Zolghadri Jahromi,et al.  Drug-target continuous binding affinity prediction using multiple sources of information , 2021, Expert Syst. Appl..

[18]  Xing Chen,et al.  Predicting potential small molecule-miRNA associations based on bounded nuclear norm regularization , 2021, Briefings Bioinform..

[19]  M. Zolghadri Jahromi,et al.  Binding affinity prediction for binary drug–target interactions using semi-supervised transfer learning , 2021, Journal of Computer-Aided Molecular Design.

[20]  Zhijian Xu,et al.  MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network , 2021, Bioinform..

[21]  I. Sohn,et al.  Prediction of drug–target binding affinity using similarity-based convolutional neural network , 2021, Scientific Reports.

[22]  Jimeng Sun,et al.  DeepPurpose: a deep learning library for drug–target interaction prediction , 2020, Bioinform..

[23]  Parvin Razzaghi,et al.  DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks , 2020, Bioinform..

[24]  Ce Liu,et al.  Supervised Contrastive Learning , 2020, NeurIPS.

[25]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[26]  Kayvan Najarian,et al.  Machine learning approaches and databases for prediction of drug–target interaction: a survey paper , 2020, Briefings Bioinform..

[27]  Angshul Majumdar,et al.  Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization , 2020, PloS one.

[28]  Xiaoli Li,et al.  Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey , 2019, Briefings Bioinform..

[29]  Xing Chen,et al.  MicroRNA-small molecule association identification: from experimental results to computational models , 2018, Briefings Bioinform..

[30]  Jie Li,et al.  Review of Drug Repositioning Approaches and Resources , 2018, International journal of biological sciences.

[31]  Di Wu,et al.  DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks , 2018, bioRxiv.

[32]  Tao Jiang,et al.  NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions , 2018, bioRxiv.

[33]  Arzucan Özgür,et al.  DeepDTA: deep drug–target binding affinity prediction , 2018, Bioinform..

[34]  Artem Cherkasov,et al.  SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines , 2017, Journal of Cheminformatics.

[35]  Jian Peng,et al.  A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information , 2017, Nature Communications.

[36]  S. Niu,et al.  Deep-Learning-Based Drug-Target Interaction Prediction. , 2017, Journal of proteome research.

[37]  Kihyuk Sohn,et al.  Improved Deep Metric Learning with Multi-class N-pair Loss Objective , 2016, NIPS.

[38]  Yongdong Zhang,et al.  Drug-target interaction prediction: databases, web servers and computational models , 2016, Briefings Bioinform..

[39]  P. Garg,et al.  An improved approach for predicting drug-target interaction: proteochemometrics to molecular docking. , 2016, Molecular bioSystems.

[40]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Xiang Zhang,et al.  Drug repositioning by integrating target information through a heterogeneous network model , 2014, Bioinform..

[42]  T. Aittokallio,et al.  Toward more realistic drug–target interaction predictions , 2014, Briefings Bioinform..

[43]  Tao Xu,et al.  Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A Comparative and Integrative Analysis , 2014, J. Chem. Inf. Model..

[44]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2013 , 2012, Nucleic Acids Res..

[45]  Mindy I. Davis,et al.  Comprehensive analysis of kinase inhibitor selectivity , 2011, Nature Biotechnology.

[46]  David S. Wishart,et al.  DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs , 2010, Nucleic Acids Res..

[47]  P. Bork,et al.  A side effect resource to capture phenotypic effects of drugs , 2010, Molecular systems biology.

[48]  K. S. Deshpande,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[49]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[50]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[51]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[52]  OUP accepted manuscript , 2022, Bioinformatics.

[53]  Thin Nguyen1,et al.  GraphDTA: Predicting drug–target binding affinity with graph neural networks , 2022 .