Chapter 6 Caveolae and Estrogen Receptor Signaling

[1]  D. Deecher,et al.  Characterization of a membrane-associated estrogen receptor in a rat hypothalamic cell line (D12) , 2003, Endocrine.

[2]  Lei Li,et al.  Plasma membrane localization and function of the estrogen receptor α variant (ER46) in human endothelial cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Baron,et al.  Src Kinase Mediates Phosphatidylinositol 3-Kinase/Akt-dependent Rapid Endothelial Nitric-oxide Synthase Activation by Estrogen* , 2003, The Journal of Biological Chemistry.

[4]  E. Connolly,et al.  ER-X: A Novel, Plasma Membrane-Associated, Putative Estrogen Receptor That Is Regulated during Development and after Ischemic Brain Injury , 2002, The Journal of Neuroscience.

[5]  Richard G. W. Anderson,et al.  ERβ Has Nongenomic Action in Caveolae , 2002 .

[6]  M. Mendelsohn,et al.  Protective effects of estrogen on the cardiovascular system. , 1999, The American journal of cardiology.

[7]  M. Wyckoff,et al.  Plasma Membrane Estrogen Receptors Are Coupled to Endothelial Nitric-oxide Synthase through Gαi * , 2001, The Journal of Biological Chemistry.

[8]  F. Wunderlich,et al.  Estradiol Signaling via Sequestrable Surface Receptors. , 2001, Endocrinology.

[9]  M. Mendelsohn Nongenomic, ER-mediated activation of endothelial nitric oxide synthase: how does it work? What does it mean? , 2000, Circulation research.

[10]  Richard G. W. Anderson,et al.  Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. , 2000, Circulation research.

[11]  W. Sessa,et al.  Membrane Estrogen Receptor Engagement Activates Endothelial Nitric Oxide Synthase via the PI3-Kinase–Akt Pathway in Human Endothelial Cells , 2000, Circulation research.

[12]  K. Ley,et al.  Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase , 2000, Nature.

[13]  J. Bender,et al.  Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  V. Miller Gender, estrogen, and NOS: cautions about generalizations. , 1999, Circulation research.

[15]  R. Karas,et al.  Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. , 1999, The Journal of clinical investigation.

[16]  G. Greene,et al.  Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells. , 1999, Molecular endocrinology.

[17]  C. Watson,et al.  Membrane-initiated steroid actions and the proteins that mediate them. , 1999, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[18]  J. Wess,et al.  Molecular basis of receptor/G-protein-coupling selectivity. , 1998, Pharmacology & therapeutics.

[19]  Richard G. W. Anderson,et al.  Role of plasmalemmal caveolae in signal transduction. , 1998, American journal of physiology. Lung cellular and molecular physiology.

[20]  M. Lisanti,et al.  Caveolins, a Family of Scaffolding Proteins for Organizing “Preassembled Signaling Complexes” at the Plasma Membrane* , 1998, The Journal of Biological Chemistry.

[21]  G. Garcı́a-Cardeña,et al.  17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. , 1997, Circulation research.

[22]  P. Vanhoutte,et al.  Endothelial dysfunction and atherosclerosis. , 1997, European heart journal.

[23]  D. Harrison,et al.  Cellular and molecular mechanisms of endothelial cell dysfunction. , 1997, The Journal of clinical investigation.

[24]  C. Rosenfeld,et al.  Estrogen acutely stimulates nitric oxide synthase activity in fetal pulmonary artery endothelium. , 1997, The American journal of physiology.

[25]  A. Gilman,et al.  Attenuation of Gi- and Gq-mediated signaling by expression of RGS4 or GAIP in mammalian cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Lieberherr,et al.  Phospholipase C β and Membrane Action of Calcitriol and Estradiol* , 1997, The Journal of Biological Chemistry.

[27]  G. Garcı́a-Cardeña,et al.  Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Ramwell,et al.  The vascular protective effects of estrogen , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  Richard G. W. Anderson,et al.  Acylation Targets Endothelial Nitric-oxide Synthase to Plasmalemmal Caveolae (*) , 1996, The Journal of Biological Chemistry.

[30]  J. Wess,et al.  Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Neer Heterotrimeric C proteins: Organizers of transmembrane signals , 1995, Cell.

[32]  D. J. Carty Pertussis toxin-catalyzed ADP-ribosylation of G proteins. , 1994, Methods in enzymology.

[33]  S. Moncada,et al.  The L-arginine-nitric oxide pathway. , 1993, The New England journal of medicine.

[34]  A. Gilman G proteins and regulation of adenylyl cyclase , 1989 .