Robust stability analysis for a class of fractional order systems with uncertain parameters

The research of robust stability for fractional order linear time-invariant (FO-LTI) interval systems with uncertain parameters has become a hot issue. In this paper, it is the first time to consider robust stability of uncertain parameters FO-LTI interval systems, which have deterministic linear coupling relationship between fractional order and other model parameters. Linear matrix inequalities (LMI) methods are used, and a criterion for checking asymptotical stability of this class of systems is presented. One numerical illustrative example is given to verify the correctness of the conclusions.

[1]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[2]  Jie Li,et al.  Chaos in the fractional order unified system and its synchronization , 2008, J. Frankl. Inst..

[3]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[4]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach , 2009, IEEE Transactions on Automatic Control.

[5]  A. Oustaloup,et al.  First generation CRONE control , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[6]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[7]  Zhu Xin-jian Research on the internal and external stability of fractional order linear systems , 2004 .

[8]  J. Sabatier,et al.  LMI Tools for Stability Analysis of Fractional Systems , 2005 .

[9]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[10]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[11]  Yangquan Chen,et al.  Necessary and sufficient stability condition of fractional-order interval linear systems , 2008, Autom..

[12]  Guy Jumarie,et al.  Fractional multiple birth-death processes with birth probabilities λi(Δt)α+o((Δt)α) , 2010, J. Frankl. Inst..

[13]  Alain Oustaloup,et al.  Second generation CRONE control , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[14]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[15]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[16]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[17]  Zhu Xin-jian Stability conditions and criteria for fractional order linear time-invariant systems , 2004 .

[18]  Aydin Kurnaz,et al.  The solution of the Bagley-Torvik equation with the generalized Taylor collocation method , 2010, J. Frankl. Inst..

[19]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[20]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[21]  Alain Oustaloup,et al.  The great principles of the CRONE control , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[22]  Yangquan Chen,et al.  Application of numerical inverse Laplace transform algorithms in fractional calculus , 2011, J. Frankl. Inst..

[23]  M. Nouillant,et al.  First generation scalar CRONE control: application to a two DOF manipulator and comparison with non linear decoupling control , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[24]  José J. de Espíndola,et al.  On the passive control of vibrations with viscoelastic dynamic absorbers of ordinary and pendulum types , 2010, J. Frankl. Inst..

[25]  Zhao Ling-Dong,et al.  A novel stablility theorem for fractional systems and its applying in synchronizing fractional chaotic system based on back-stepping approach , 2009 .

[26]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..

[27]  Kevin L. Moore,et al.  Analytical stability bound for delayed second-order systems with repeating poles using Lambert function W , 2002, Autom..

[28]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[29]  Zou Yun Summary of research on fractional-order control , 2009 .